Background: Hybrid locked plating has become a commonly used technique for treating complex fractures and nonunions, but information is lacking to direct the specific application of this fixation method. The purpose of this study was to determine the effect of the number and location of locked screws on the mechanical properties of hybrid plate constructs in an osteoporotic bone model.

Methods: A synthetic commercial composite model of osteoporotic bone with a 5-mm simulated fracture gap was fixed with a 12-hole plate. Seven different constructs (n=5/construct) were tested including 2 unlocked and 5 hybrid configurations. All constructs used bicortical screws tightened to 4 N.m torque. Cyclic (sinusoidal) testing was performed with a peak torsional load of +/-8 N.m for 100,000 cycles. Torsional stiffness of each construct was measured in 10,000 cycle increments, and the maximum removal torque of each screw was measured at the conclusion of torsional testing.

Results: Stiffness of the constructs at each testing interval was most affected by the number of screws; stiffness increased at least 33% when 4 screws were used on each side of the fracture versus 3 per side. Among the constructs with 4 screws in each fragment, no difference was observed when 1 or 2 unlocked screws were replaced with locked screws on each side of the simulated fracture. In contrast, replacement of 3 unlocked screws with locked screws increased the torsional stiffness of the construct by another 24% (P<0.001). Compared with baseline (pretesting) values, postcycling screw removal torque was similar for locked screws at all positions (average 50% of peak removal), but removal torque of unlocked screws furthest from the fracture was increased by 274% if they were placed immediately adjacent to a locked screw (P<0.001).

Conclusions: At least 3 bicortical locked screws on each side of a fracture are needed to increase the torsional stiffness in an osteoporotic bone model. Locked screws placed between the fracture and unlocked screws protect the unlocked screws from loosening and may have some clinical utility in improving fatigue life of the construct.

Level Of Evidence: Biomechanical level 1.

Download full-text PDF

Source
http://dx.doi.org/10.1097/BOT.0b013e3181d35c29DOI Listing

Publication Analysis

Top Keywords

locked screws
16
plate constructs
12
screws
9
constructs osteoporotic
8
osteoporotic bone
8
simulated fracture
8
torsional stiffness
8
stiffness construct
8
screws side
8
unlocked screws
8

Similar Publications

Clinical Efficacy of Three-Dimensional-Printed Pure Titanium Fracture Plates with Locking Screw Systems in Distal Tibia Fractures.

Medicina (Kaunas)

January 2025

Department of Orthopedic Surgery, Anam Hospital, Korea University College of Medicine, 73 Goryeodae-ro Seongbuk-gu, Seoul 02841, Republic of Korea.

Distal tibia fractures are high-energy injuries characterized by a mismatch between standard plate designs and the patient's specific anatomical bone structure, which can lead to severe soft tissue damage. Recent advancements have focused on the development of customized metal plates using three-dimensional (3D) printing technology. However, 3D-printed metal plates using titanium alloys have not incorporated a locking system due to the brittleness of these alloys.

View Article and Find Full Text PDF

The study aimed to evaluate a newly designed semicircular implant for the fixation of Vancouver Type B1 periprosthetic femoral fractures (PFFs) in total hip arthroplasty (THA) patients. To determine its strength and clinical applicability, the new implant was compared biomechanically with conventional fixation methods, such as lateral locking plate fixation and a plate combined with cerclage wires. : Fifteen synthetic femur models were used in this biomechanical study.

View Article and Find Full Text PDF

Introduction: We propose and assess the biomechanical stability of medial column screw supplementation in a synthetic distal femur fracture model.

Materials And Methods: Twenty-four low density synthetic femora modeling osteoporotic, intraarticular distal femur fractures with medial metaphyseal comminution were split into two fixation groups: (1) lateral locking distal femur plate (PA- plate alone) and (2) lateral locking distal femur plate with a 6.5 mm fully threaded medial cannulated screw (PWS- plate with screw).

View Article and Find Full Text PDF

Background: Fixation of distal femoral fractures remains a challenge, and nonunions are common with standard constructs. Far cortical locking (FCL) constructs have been purported to lead to improved fracture-healing as compared with that achieved with traditional locking bridge plates. We sought to test this hypothesis in a comparative effectiveness clinical trial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!