Iron-based 1D nanostructures have been successfully prepared using an electrospinning technique and varying the pyrolysis atmospheres. Hematite (Fe(2)O(3)) nanotubes and polycrystalline Fe(3)C nanofibers were obtained by simple air or mixed gas (H(2), Ar) annealing treatments. Using the air annealing treatment, a high control of the morphology as well as of the wall thickness of the nanotubes was demonstrated with a direct influence of the starting polymer concentration. When mixed gases (H(2) and Ar) were used for the annealing treatments, for the first time polycrystalline Fe(3)C nanofibers composed of carbon graphitic planes were obtained, ensuring Fe(3)C nanoparticle stability and nanofiber cohesion. The morphology and structural properties of all these iron-based 1D nanostructures were fully characterized by SEM, TEM, XRD and Raman spectroscopy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/21/12/125701 | DOI Listing |
Wiley Interdiscip Rev Nanomed Nanobiotechnol
January 2025
Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
Iron-based nanomaterials (IBNMs) have been widely applied in biomedicine applications including magnetic resonance imaging, targeted drug delivery, tumor therapy, and so forth, due to their unique magnetism, excellent biocompatibility, and diverse modalities. Further research on its enormous biomedical potential is still ongoing, and its new features are constantly being tapped and demonstrated. Among them, various types of IBNMs have demonstrated significant cancer therapy capabilities by regulating the tumor microenvironment (TME).
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Princeton Materials Institute, Princeton University, Princeton, NJ, 08540, USA.
Graphene aerogels (GAs) with engineered architectures are a promising material for applications ranging from filtration to energy storage/conversion. However, current preparation approaches involve the combination of multiple intrinsically-different methodologies to achieve graphene-synthesis and architecture-engineering, complicating the entire procedure. Here, a novel approach to prepare GAs with engineered architectures based on the laser-upcycling of protein biowaste, hemoglobin, is introduced.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan, 471003, China. Electronic address:
Chemosphere
November 2024
State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China. Electronic address:
Int J Nanomedicine
November 2024
Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
Introduction: Ferroptosis-driven tumor ablation strategies based on nanotechnology could be achieved by elevating intracellular iron levels or inhibiting glutathione peroxidase 4 (GPX4) activity. However, the intracellular antioxidative defense mechanisms endow tumor cells with ferroptosis resistance capacity. The purpose of this study was to develop a synergistic therapeutic platform to enhance the efficacy of ferroptosis-based tumor therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!