Iron-based 1D nanostructures by electrospinning process.

Nanotechnology

Laboratoire de Physique Appliquée (LPA) associé à l'école doctorale des Sciences et Technologies, Département de Physique, Université Libanaise, Faculté des Sciences II, 90656 Jdeidet El Metn, Lebanon.

Published: March 2010

Iron-based 1D nanostructures have been successfully prepared using an electrospinning technique and varying the pyrolysis atmospheres. Hematite (Fe(2)O(3)) nanotubes and polycrystalline Fe(3)C nanofibers were obtained by simple air or mixed gas (H(2), Ar) annealing treatments. Using the air annealing treatment, a high control of the morphology as well as of the wall thickness of the nanotubes was demonstrated with a direct influence of the starting polymer concentration. When mixed gases (H(2) and Ar) were used for the annealing treatments, for the first time polycrystalline Fe(3)C nanofibers composed of carbon graphitic planes were obtained, ensuring Fe(3)C nanoparticle stability and nanofiber cohesion. The morphology and structural properties of all these iron-based 1D nanostructures were fully characterized by SEM, TEM, XRD and Raman spectroscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/21/12/125701DOI Listing

Publication Analysis

Top Keywords

iron-based nanostructures
12
polycrystalline fe3c
8
fe3c nanofibers
8
annealing treatments
8
nanostructures electrospinning
4
electrospinning process
4
process iron-based
4
nanostructures prepared
4
prepared electrospinning
4
electrospinning technique
4

Similar Publications

Iron-Based Nanomaterials for Modulating Tumor Microenvironment.

Wiley Interdiscip Rev Nanomed Nanobiotechnol

January 2025

Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.

Iron-based nanomaterials (IBNMs) have been widely applied in biomedicine applications including magnetic resonance imaging, targeted drug delivery, tumor therapy, and so forth, due to their unique magnetism, excellent biocompatibility, and diverse modalities. Further research on its enormous biomedical potential is still ongoing, and its new features are constantly being tapped and demonstrated. Among them, various types of IBNMs have demonstrated significant cancer therapy capabilities by regulating the tumor microenvironment (TME).

View Article and Find Full Text PDF

Graphene aerogels (GAs) with engineered architectures are a promising material for applications ranging from filtration to energy storage/conversion. However, current preparation approaches involve the combination of multiple intrinsically-different methodologies to achieve graphene-synthesis and architecture-engineering, complicating the entire procedure. Here, a novel approach to prepare GAs with engineered architectures based on the laser-upcycling of protein biowaste, hemoglobin, is introduced.

View Article and Find Full Text PDF

Research progress and applications of iron-based nanozymes in colorimetric sensing of agricultural pollutants.

Biosens Bioelectron

March 2025

Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan, 471003, China. Electronic address:

Article Synopsis
  • Natural enzymes are effective but have limitations like poor stability and high costs; nanozymes, particularly iron-based ones, offer a better alternative with improved catalytic properties.
  • Iron-based nanozymes can be categorized by their catalytic activities (like peroxidase and oxidase) and show promise for detecting agricultural pollutants using a simple and fast colorimetric method.
  • The review discusses the structure and functionality of these nanozymes, their applications in detecting various contaminants, and suggests future research directions in sensing technology.
View Article and Find Full Text PDF

Sustainable chloramine-functionalized iron hydroxide nanofiber membrane for arsenic(Ⅲ) removal via oxidation-adsorption mechanism.

Chemosphere

November 2024

State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China. Electronic address:

Article Synopsis
  • Arsenic-contaminated groundwater, particularly As(III), poses a global environmental challenge due to its toxicity and difficulty in removal; this study focuses on developing a chloramine-functionalized iron hydroxide cellulose nanofibrous membrane (Fe-CNFM-Cl) to address this issue.* -
  • The Fe-CNFM-Cl membrane not only adsorbs As(III) but also oxidizes it to a more removable form, As(V), allowing significant reduction of arsenic levels from 1418.73 μg L to below drinking water standards in about 300 minutes.* -
  • This innovative membrane shows a high capacity for arsenic removal across a wide pH range, can recover its functionality after use
View Article and Find Full Text PDF

Introduction: Ferroptosis-driven tumor ablation strategies based on nanotechnology could be achieved by elevating intracellular iron levels or inhibiting glutathione peroxidase 4 (GPX4) activity. However, the intracellular antioxidative defense mechanisms endow tumor cells with ferroptosis resistance capacity. The purpose of this study was to develop a synergistic therapeutic platform to enhance the efficacy of ferroptosis-based tumor therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!