PURPOSE. Retinal ischemia/reperfusion (I/R) injury damages retinal neurons. Carbon monoxide (CO) recently attracted attention as cytoprotective because of its anti-inflammatory and antiapoptotic effects. Rapid preconditioning of retinal neurons by inhaled CO before I/R injury may reduce inflammation and apoptosis in retinal ganglion cells (RGCs). METHODS. I/R injury was performed on the left eyes of rats (n = 8) with or without inhaled CO preconditioning (250 ppm) for 1 hour before ischemia. Densities of fluorogold-prelabeled RGCs were analyzed 7 days after injury in whole-mounts. Retinal tissue was further harvested to analyze protein expression of TNF-alpha, HSP-70, and mitogen-activated protein kinases (MAPKs) pERK1/2 and p-p38. DNA-binding activities of the transcription factors NF-kappaB, AP-1, CREB, and HSF-1 were determined to elucidate a possible pathway of neuroprotection. RESULTS. Seven days after I/R injury, RGC death decreased by 52% in the CO preconditioning group compared with controls receiving room air (P < 0.001). Similarly, CO inhalation resulted in attenuated caspase-3 activity and TNF-alpha protein expression. In contrast, HSP-70 protein expression was elevated in the retina after CO. CREB and HSF-1 showed CO-dependent regulation and p-p38 MAPK. CONCLUSIONS. Rapid preconditioning with CO mediates anti-inflammatory and antiapoptotic effects in retinal I/R injury, thus making it neuroprotective. Further studies are needed to evaluate whether CO posttreatment may represent a therapeutic option counteracting ischemic neuronal injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.09-4894 | DOI Listing |
Acute myocardial infarction (MI) is a leading cause of death worldwide. Although with current treatment, acute mortality from MI is low, the damage and remodeling associated with MI are responsible for subsequent heart failure. Reducing cell death associated with acute MI would decrease the mortality associated with heart failure.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Xiamen Key Laboratory of Indoor Air and Health, Center for Excellence in Regional Atmospheric Environment, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
Phytomedicine
December 2024
Department of Traditional Chinese Medicine, Qingdao Municipal Hospital, Qingdao, PR China. Electronic address:
Background: Fangji Huangqi Decoction (FJHQD), a famous Traditional Chinese Medicine (TCM) formula, has been widely applied in improving renal function. However, the interaction of bioactives from FJHQD with the targets involved in acute renal injury (AKI) has not been elucidated yet.
Purpose: A network pharmacology-based approach combined with molecular docking and in vitro and in vivo validation was performed to determine the bioactives, key targets, and potential pharmacological mechanism of FJHQD against AKI.
Redox Biol
December 2024
Innovation Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250307, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK. Electronic address:
Ca overload and mitochondrial dysfunction play crucial roles in myocardial ischemia-reperfusion (I/R) injury. Piezo1, a mechanosensitive cation channel, is essential for intracellular Ca homeostasis. The objective of this research was to explore the effects of Piezo1 on mitochondrial function during myocardial I/R injury.
View Article and Find Full Text PDFSci Rep
December 2024
Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Renal ischemia-reperfusion (I/R) injury is a common clinical factor for acute kidney injury (AKI). A current study investigated the renoprotective effects of the trinitroglycerine (TNG) combination with chitosan nanoparticles (CNPs) on renal I/R-induced AKI. Rats were randomly assigned to five groups (n = 8/group): Sham, I/R, TNG (50 mg/kg) + I/R, CNPs (60 mg/kg) + I/R, and TNG-CNPs + I/R.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!