Ebola viruses are highly pathogenic viruses that cause outbreaks of hemorrhagic fever in humans and other primates. To meet the need for a vaccine against the several types of Ebola viruses that cause human diseases, we developed a multivalent vaccine candidate (EBO7) that expresses the glycoproteins of Zaire ebolavirus (ZEBOV) and Sudan ebolavirus (SEBOV) in a single complex adenovirus-based vector (CAdVax). We evaluated our vaccine in nonhuman primates against the parenteral and aerosol routes of lethal challenge. EBO7 vaccine provided protection against both Ebola viruses by either route of infection. Significantly, protection against SEBOV given as an aerosol challenge, which has not previously been shown, could be achieved with a boosting vaccination. These results demonstrate the feasibility of creating a robust, multivalent Ebola virus vaccine that would be effective in the event of a natural virus outbreak or biological threat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849326PMC
http://dx.doi.org/10.1128/CVI.00467-09DOI Listing

Publication Analysis

Top Keywords

ebola viruses
12
nonhuman primates
8
ebola virus
8
single complex
8
ebola
5
vaccine
5
protection nonhuman
4
primates species
4
species ebola
4
virus infection
4

Similar Publications

Ebola virus (EBOV) causes severe disease in humans, with mortality as high as 90%. The small-molecule antiviral drug remdesivir (RDV) has demonstrated a survival benefit in EBOV-exposed rhesus macaques. Here, we characterize the efficacy of multiple intravenous RDV dosing regimens on survival of rhesus macaques 42 days after intramuscular EBOV exposure.

View Article and Find Full Text PDF

The Ebola virus (EBOV) causes severe disease in humans, and animal models are needed to evaluate the efficacy of vaccines and therapeutics. While non-human primate (NHP) and rodent EBOV infection models have been well characterized, there is a growing need for an intermediate model. Here, we provide the first report of a small-particle aerosol (AE) EBOV ferret model and disease progression compared with the intramuscular (IM) EBOV ferret model.

View Article and Find Full Text PDF

'Frozen' virus genome sequences are sampled from outbreaks and have unusually low sequence divergence when compared to genome sequences from historical strains. A growing number of 'frozen' virus genome sequences are being reported as virus genome sequencing becomes more common. Examples of 'frozen' sequences include the 1977 H1N1 'Russian' flu; Venezuelan Equine Encephalitis Virus from Venezuela and Colombia in 1995; E71 sequences from a Hand, Foot and Mouth outbreak in 2007-2009 in China; and a polio strain isolated in 2014 from Anhui, China.

View Article and Find Full Text PDF

Self-amplifying RNA virus vectors for drug delivery.

Expert Opin Drug Deliv

January 2025

PanTherapeutics, Lutry, Switzerland.

Article Synopsis
  • Self-amplifying RNA viruses are effective tools for delivering genetic information and enhancing antigen production against infectious diseases and cancers by amplifying RNA within host cells.
  • Extensive research, including animal studies and clinical trials, has shown that these viral vectors can generate significant immune responses, with potential applications in treating tumors and protecting against pathogens.
  • The promising results from preclinical studies have led to the approval of a vaccine using a self-amplifying RNA virus for Ebola, indicating their potential in therapeutic interventions and future research in areas like neurological disorders.
View Article and Find Full Text PDF

New reverse sum Revan indices for physicochemical and pharmacokinetic properties of anti-filovirus drugs.

Front Chem

December 2024

Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai, Tamil Nadu, India.

Ebola and Marburg viruses, biosafety level 4 pathogens, cause severe hemorrhaging and organ failure with high mortality. Although some FDA-approved vaccines or therapeutics like Ervebo for Zaire Ebola virus exist, still there is a lack of effective therapeutics that cover all filoviruses, including both Ebola and Marburg viruses. Therefore, some anti-filovirus drugs such as Pinocembrin, Favipiravir, Remdesivir and others are used to manage infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!