The maintenance of cell fate is important for normal development and tissue homeostasis. Epigenetic mechanisms, including histone modifications, are likely to play crucial roles in cell-fate maintenance. However, in contrast to the established functions of histone methylation, which are mediated by the polycomb proteins, the roles of histone acetylation in cell-fate maintenance are poorly understood. Here, we show that the C. elegans acetylated-histone-binding protein BET-1 is required for the establishment and maintenance of stable fate in various lineages. In most bet-1 mutants, cells adopted the correct fate initially, but at later stages they often transformed into a different cell type. By expressing BET-1 at various times in development and examining the rescue of the Bet-1 phenotype, we showed that BET-1 functions both at the time of fate acquisition, to establish a stable fate, and at later stages, to maintain the established fate. Furthermore, the disruption of the MYST HATs perturbed the subnuclear localization of BET-1 and caused bet-1-like phenotypes, suggesting that BET-1 is recruited to its targets through acetylated histones. Our results therefore indicate that histone acetylation plays a crucial role in cell-fate maintenance.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.042812DOI Listing

Publication Analysis

Top Keywords

cell-fate maintenance
12
bet-1
8
protein bet-1
8
myst hats
8
histone acetylation
8
stable fate
8
fate
6
maintenance
5
double bromodomain
4
bromodomain protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!