The entry mechanism of hepatitis B virus (HBV) has not been defined, and this impedes development of antiviral therapies aimed at an early step in the viral life cycle. HBV infection has both host and tissue specificities. For the related duck hepatitis B virus (DHBV), duck carboxypeptidase D (DCPD) has been proposed as the species-specific docking receptor, while glycine decarboxylase (DGD) may serve as a tissue-specific cofactor or secondary receptor. DGD binds to several truncated versions of the viral large envelope protein but not to the full-length protein, suggesting a need for proteolytic cleavage of the envelope protein by a furin-like proprotein convertase. In the present study, we found that transfected DCPD could confer DHBV binding to non-duck cell lines but that this was followed by rapid virus release from cells. Coexpression of furin led to DCPD cleavage and increased virus retention. Treatment of DHBV particles with endosome prepared from duck liver led to cleavage of the large envelope protein, and such viral preparation could generate a small amount of covalently closed circular DNA in LMH cells, a chicken hepatoma cell line resistant to DHBV infection. A furin inhibitor composed of decanoyl-RVKR-chloromethylketone blocked endosomal cleavage of the large envelope protein in vitro and suppressed DHBV infection of primary duck hepatocytes in vivo. These findings suggest that furin or a furin-like proprotein convertase facilitates DHBV infection by cleaving both the docking receptor and the viral large envelope protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2863783PMC
http://dx.doi.org/10.1128/JVI.02281-09DOI Listing

Publication Analysis

Top Keywords

envelope protein
20
large envelope
16
hepatitis virus
12
dhbv infection
12
duck hepatitis
8
docking receptor
8
viral large
8
furin-like proprotein
8
proprotein convertase
8
cleavage large
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!