This study aims to further the understanding of nanoscale structures relevant for cellular recognition on contact and interaction with natural-based materials. The correlation between surface characteristics and protein adsorption from unitary and complex protein systems was investigated with respect to altering the bulk chemistry of the substrate material. Polymeric blends of starch and cellulose acetate, polycaprolactone (SPCL) and ethylene vinyl alcohol (SEVA-C) were used. Different proteins, bovine serum albumin, human serum albumin (HSA) and human fibronectin (HFN), were selected for this study. The construction of adsorption isotherms is an important starting point towards characterizing the interactions between surfaces and proteins. In this study, albumin adsorption isotherms fit the Freundlich model and were correlated with the chemistry and morphology of surfaces. In addition, protein distribution, quantification and competition were measured using fluorimetry and visualized by confocal microscopy. The analysis of unitary systems demonstrated that the adsorption of HSA was generally lower than that of HFN. In the latter case, SPCL and SEVA-C blends reached adsorption values of 97 and 89 per cent, respectively. In studying the co-adsorption of proteins, an increase in both HSA and HFN on SEVA-C surfaces was observed. SPCL showed no substantial increase in the adsorption of the proteins in competitive conditions. The similarity of these materials with other polysaccharide-based materials increases the relevance of the presented results. This study provides valuable information for the development of strategies towards the control of protein orientation and functionality as the availability of cell signalling epitopes for a broader family of materials that continue to be a significant component of this field of research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894887 | PMC |
http://dx.doi.org/10.1098/rsif.2010.0022 | DOI Listing |
J Nanobiotechnology
December 2024
State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
Background: Electrospun nanofiber scaffolds have been widely used in tissue engineering because they can mimic extracellular matrix-like structures and offer advantages including high porosity, large specific surface area, and customizable structure. In this study, we prepared scaffolds composed of aligned and random electrospun polycaprolactone (PCL) nanofibers capable of delivering basic fibroblast growth factor (bFGF) in a sustained manner for repairing damaged tendons.
Results: Aligned and random PCL fiber scaffolds containing bFGF-loaded bovine serum albumin (BSA) nanoparticles (BSA-bFGF NPs, diameter 146 ± 32 nm) were fabricated, respectively.
Sci Rep
December 2024
Department of Urology, Jichi Medical University, 3311-1 Yakushiji Shimotsuke, Tochigi, 329-0498, Japan.
This study aimed to identify the predictive factors associated with the oncological outcomes of metastatic hormone-sensitive prostate cancer-related genes. A nomogram for predicting prostate cancer-specific survival (CSS) was constructed based on biopsy samples obtained from 103 patients with metastatic hormone-sensitive prostate cancer. We analyzed the association between clinical data and mRNA expression levels.
View Article and Find Full Text PDFPhysiol Rep
December 2024
School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia.
Exercise-induced muscle damage (EIMD) can affect athlete performance and is a risk factor for major muscle injury. The temporal profile of thiol-oxidized albumin, a marker of oxidative stress, has shown potential in assessing recovery from EIMD in non-athletically trained participants but not yet in trained participants. Our primary aim was to assess whether there are changes in the level of thiol-oxidized albumin after a marathon in athletically trained participants.
View Article and Find Full Text PDFEur J Pharm Sci
December 2024
Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany; Andreas Hettich GmbH & Co. KG, 78532 Tuttlingen, Germany.
Thermosensitive liposomes (TSLs) have great potential for the selective delivery of cytostatic drugs to the tumor site with greatly reduced side effects. Here we report the discovery and characterization of new thermosensitive small multilamellar lipid nanoparticles (tSMLPs) with unusually high temperature selectivity. Furthermore, the temperature-dependent release of the fluorescent marker calcein from tSMLPs is enhanced by human serum albumin.
View Article and Find Full Text PDFClin Exp Nephrol
December 2024
Department of Nephrology, Ningbo Yinzhou Second Hospital, No. 998, North Qianhe Road, Yinzhou District, Ningbo City, 315000, Zhejiang Province, China.
Purpose: The study aimed to evaluate the efficacy and safety of rituximab (RTX) in primary IgA nephropathy (IgAN).
Methods: A retrospective review was conducted on the medical records of 22 patients diagnosed with primary IgAN who received RTX treatment. The clinical data, including blood tests, urine examinations and estimated glomerular filtration rate (eGFR), were analyzed at four time point: baseline, 3 months, 6 months and 12 months.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!