In an effort to find inhibitors that are effective against both Candida and Aspergillus spp., a series of 5(6)-(un)substituted benzotriazole analogs, represented by compounds 3a-3h and 3b'-3f', were prepared using a crystalline oxirane intermediate 1 previously synthesized in our laboratory. All the compounds were evaluated for inhibitory activity against various species of Candida and Aspergillus. Compounds 3b' (5,6-dimethylbenzotriazol-2-yl derivative), 3d (5-chlorobenzotriazol-1-yl derivative) and 3e' (6-methylbenzotriazol-1-yl derivative) exhibited potent antifungal activity, with the MICs for Candida spp. and Aspergillus niger, ranging from 1.6 microg/mL to 25 microg/mL and 12.5 microg/mL to 25 microg/mL, respectively. The present work describes the design, synthesis, regioisomer characterization (through COSY and NOESY 2D-NMR spectroscopy and single molecule X-ray crystallography), antifungal evaluation, molecular docking, and structure-activity relationships of the various 5(6)-(un)substituted benzotriazole analogs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2010.01.062DOI Listing

Publication Analysis

Top Keywords

design synthesis
8
antifungal activity
8
candida aspergillus
8
56-unsubstituted benzotriazole
8
benzotriazole analogs
8
microg/ml microg/ml
8
synthesis determination
4
determination antifungal
4
activity 56-substituted
4
56-substituted benzotriazoles
4

Similar Publications

Design, synthesis, and in vitro antitumor evaluation of novel benzimidazole acylhydrazone derivatives.

Mol Divers

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.

This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.

View Article and Find Full Text PDF

The reduction of CO2 to CO provides a promising approach to the production of valuable chemicals through CO2 utilization. However, challenges persist with the rapid deactivation and insufficient activity of catalysts. Herein, we developed a soft-hard dual-template method to synthesize layered MoS2 using inexpensive and scalable templates, enabling facile regulation of sulfur vacancies by controlling the number of layers.

View Article and Find Full Text PDF

Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion.

View Article and Find Full Text PDF

Construction of Escherichia coli cell factory for efficient synthesis of indigo.

Chembiochem

January 2025

Jiangnan University, State Key Laboratory of Food Science and Technology, 1800 Lihu Road, Wuxi, China, 214122, Wuxi, CHINA.

Indigo is widely used in dyes, medicines and semiconductors materials due to its excellent dyeing efficiency, antibacterial, antiviral, anticancer, anti-corrosion, and thermostability properties. Here, a biosynthetic pathway for indigo was designed, integrating two enzymes (EcTnaA, MaFMO) into a higher L-tryptophan-producing the strain Escherichia coli TRP. However, the lower catalytic activity of MaFMO was a bottleneck for increasing indigo titers.

View Article and Find Full Text PDF

The sulfur-related metabolic status of during infection reveals cytosolic serine hydroxymethyltransferase as a promising antifungal target.

Virulence

December 2025

Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.

Sulfur metabolism is an essential aspect of fungal physiology and pathogenicity. Fungal sulfur metabolism comprises anabolic and catabolic routes that are not well conserved in mammals, therefore is considered a promising source of prospective novel antifungal targets. To gain insight into sulfur-related metabolism during infection, we used a NanoString custom nCounter-TagSet and compared the expression of 68 key metabolic genes in different murine models of invasive pulmonary aspergillosis, at 3 time-points, and under a variety of conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!