Pneumosiderosis or Welder's lung is an occupational lung disease which is usually seen after chronic exposure to iron dust. We present a case of a 64-year-old welder in whom the diagnosis of pneumosiderosis was made by lung biopsies. We also briefly review the literature regarding the disease, its prognosis and association with development of lung cancer. Avoidance of iron dust exposure and implementing prevention strategies in people at risk are the mainstay of therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2827098 | PMC |
http://dx.doi.org/10.1186/1757-1626-0002-0000006639 | DOI Listing |
Adv Healthc Mater
January 2025
Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
Eosinophils play a crucial role as effector cells in asthma pathogenesis, with their differentiation being tightly regulated by metabolic mechanisms. While the involvement of iron in various cellular processes is well known, its specific role in eosinophil differentiation has largely remained unexplored. This study demonstrates that iron levels are increased during the differentiation process from eosinophil progenitors to mature and activated eosinophils in the context of allergic airway inflammation.
View Article and Find Full Text PDFWaste Manag
December 2024
Department of Mineral Processing, CSIR-IMMT, Bhubaneswar, Odisha 751013, India. Electronic address:
This study employed a lab-scale fluidized bed steam gasification setup to perform the co-gasification experiments with blast furnace dust (BFD) and petcoke (PC) - wastes from the steel and refining industries, respectively. Multiple experiments were conducted at the optimized conditions to decipher the effects of the mineralogical content of the feed samples on the gasification performance parameters. With the addition of iron and zinc-abundant BFD sample to PC, an effective enhancement in the ability of the gasifier to produce hydrogen-rich synthesis gas was observed, attributed to an increase in surface active sites for gasification reactivity.
View Article and Find Full Text PDFACS Earth Space Chem
December 2024
Department of Chemistry, University of Colorado Boulder Boulder, Colorado 80309, United States.
Iodine in the atmosphere destroys ozone and can nucleate particles by formation of iodic acid, HIO. Recent field observations suggest iodate recycles from particles sustaining significant gas-phase IO radical concentrations (0.06 pptv) in aged stratospheric air, and in elevated dust plumes.
View Article and Find Full Text PDFCurr Biol
January 2025
Marine Core Research Institute (MaCRI), Kochi University, 200 Monobe-otsu, Nankoku, Kochi 783-8502, Japan.
The deep-time development of the Southern Ocean's deep-sea ecosystem remains poorly understood, despite being a key region in global ecological, climatological, and oceanographic systems, where deep water forms and biodiversity is unexpectedly high. Here, we present an ∼500,000-year fossil record of the deep-sea Southern Ocean ecosystem in the subantarctic zone. The results indicate that changes in surface productivity and the resulting food supply to the deep sea, driven by eolian dust input and iron fertilization, along with changes in bottom-water temperature influenced by deep-water circulation, have controlled the deep-sea ecosystem in the Southern Ocean on orbital (10-10 years) timescales following the Mid-Brunhes event (MBE), a major climatic transition ∼430,000 years ago.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
A technology was developed for managing Zn-bearing dust, facilitating the recycling of hazardous solid waste and the production of porous carbon materials. In the one-step process, Zn-bearing dusts were employed not only as raw materials to prepare reduced Zn-bearing dust pellets but also as activators to prepare K, Na-embedded activated carbon. In the process, the Fe, C, Zn, K, and Na in the dusts were rationally utilized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!