The yeast-like epiphytic fungus Pseudozyma flocculosa is known to antagonize powdery mildew fungi through proliferation on colonies presumably preceded by the release of an antifungal glycolipid (flocculosin). In culture conditions, P. flocculosa can be induced to produce or not flocculosin through manipulation of the culture medium nutrients. In order to characterize and understand the metabolic changes in P. flocculosa linked to glycolipid production, we conducted a 2-DE proteomic analysis and compared the proteomic profile of P. flocculosa growing under conditions favoring the development of the fungus (control) or conducive to flocculosin synthesis (stress). A large number of protein spots (771) were detected in protein extracts of the control treatment compared to only 435 matched protein spots in extracts of the stress cultures, which clearly suggests an important metabolic reorganization in slow-growing cells producing flocculosin. From the latter treatment, we were able to identify 21 protein spots that were either specific to the treatment or up-regulated significantly (2-fold increase). All of them were identified based on similarity between predicted ORF of the newly sequenced genome of P. flocculosa with Ustilago maydis' available annotated sequences. These proteins were associated with the carbon and fatty acid metabolism, and also with the filamentous change of the fungus leading to flocculosin production. This first look into the proteome of P. flocculosa suggests that flocculosin synthesis is elicited in response to specific stress or limiting conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2830954 | PMC |
http://dx.doi.org/10.1186/1477-5956-8-7 | DOI Listing |
Small Methods
January 2025
Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.
Accurately defining cell boundaries for spatial transcriptomics is technically challenging. The current major approaches are nuclear staining or mathematical inference, which either exclude the cytoplasm or determine a hypothetical boundary. Here, a new method is introduced for defining cell boundaries: labeling cell membranes using genetically coded fluorescent proteins, which allows precise indexing of sequencing spots and transcripts within cells on sections.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Facultad de Ciencias, Sección Limnología, IECA, Universidad de la República, Montevideo, Uruguay.
The biochemical composition of sediments, which depends on the origin of the organic matter (OM), is decisive in methane (CH) production. This study aimed to determine the CH produced under anaerobic conditions from different substrates: native reservoir sediments and sediments with the addition of complex OM from Microcystis spp. blooms and terrestrial plants (pasture), alongside the biochemical characterization of the substrates used.
View Article and Find Full Text PDFVet Comp Oncol
January 2025
Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil.
Inflammatory mammary carcinoma (IMC) is the most aggressive variant of invasive mammary tumours in dogs and in women. Decorin is an extracellular matrix molecule whose expression can be reduced or absent in various human cancers, which is associated with a poor prognosis. E-cadherin is a cell adhesion protein whose expression is reduced in several neoplasms.
View Article and Find Full Text PDFActa Parasitol
January 2025
Parasitology Department, Theodor Bilharz Research Institute, Giza, 12411, Egypt.
Background: The freshwater snails Biomphalaria alexandrina and Bulinus trancatus are key contributors to the transmission of S. mansoni and S.haematobium, respectively, for being their intermediate hosts.
View Article and Find Full Text PDFProteomes
December 2024
Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
Lymphatic filariasis (LF) continues to impact 657 million individuals worldwide, resulting in lifelong and chronic impairment. The prevalent anti-filarial medications-DEC, albendazole, and ivermectin-exhibit limited adulticidal efficacy. Despite ongoing LF eradication programs, novel therapeutic strategies are essential for effective control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!