Background And Purpose: Histone deacetylases (HDACs) silence genes by deacetylating lysine residues in histones and other proteins. HDAC inhibitors represent a new class of compounds with anti-inflammatory activity. This study investigated whether treatment with a broad spectrum HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA), would prevent cardiac fibrosis, part of the cardiovascular remodelling in deoxycorticosterone acetate (DOCA)-salt rats.

Experimental Approach: Control and DOCA-salt rats were treated with SAHA (25 mg x kg(-1) x day(-1) s.c.) for 32 days. Changes in cardiovascular structure and function were assessed by blood pressure in vivo and in Langendorff perfused hearts, ventricular papillary muscle and in aortic rings in vitro. Left ventricular collagen deposition was assessed by histology.

Key Results: Administration of SAHA to DOCA-salt rats attenuated the following parameters: the increased concentration of over 20 pro-inflammatory cytokines in plasma, increased inflammatory cell infiltration and interstitial collagen deposition, increased passive diastolic stiffness in perfused hearts, prolongation of action potential duration at 20% and 90% of repolarization in papillary muscle, development of left ventricular hypertrophy, systolic hypertension and changes in vascular dysfunction.

Conclusions And Implications: The HDAC inhibitor, SAHA, attenuated the cardiovascular remodelling associated with DOCA-salt hypertensive rats and improved cardiovascular structure and function, especially fibrosis, in the heart and blood vessels, possibly by suppressing inflammation. Control of cardiac histone or non-histone protein acetylation is a potential therapeutic approach to preventing cardiac remodelling, especially cardiac fibrosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2850398PMC
http://dx.doi.org/10.1111/j.1476-5381.2010.00637.xDOI Listing

Publication Analysis

Top Keywords

histone deacetylases
8
doca-salt hypertensive
8
hypertensive rats
8
hdac inhibitor
8
cardiac fibrosis
8
cardiovascular remodelling
8
doca-salt rats
8
cardiovascular structure
8
structure function
8
perfused hearts
8

Similar Publications

Background: Multiple myeloma, a malignancy of plasma cells, often involves the disruption of vitamin D metabolism. Vitamin D, acting through its receptor (VDR), affects transcription factors like FOXO and sirtuins, which regulate cellular processes. The impact of physical activity on these markers in multiple myeloma patients is unclear.

View Article and Find Full Text PDF

Background: Chronic obstructive pulmonary disease (COPD) is a prevalent yet manageable respiratory condition. However, treatments presently used normally have side effects and cannot cure COPD, making it urgent to explore effective medications. The ginsenoside Rg3 (Rg3) has been shown to have anti-inflammatory and anti-tumor properties and can improve COPD.

View Article and Find Full Text PDF

Resveratrol (RSV), a natural polyphenol, has been suggested to influence glucose and lipid metabolism. However, the underlying molecular mechanism of its action remains largely unknown due to its multiple biological targets and low bioavailability. In this study, we demonstrate that RSV supplementation ameliorates high-fat-diet (HFD)-induced gut microbiota dysbiosis, enhancing the abundance of anti-obesity bacterial strains such as and .

View Article and Find Full Text PDF

Genome-wide characterization of RsHDAC gene members unravels a positive role of RsHDA9 in thermotolerance in radish (Raphanus sativus L.).

Plant Physiol Biochem

December 2024

Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:

Radish is an economically important root vegetable crop worldwide. Histone deacetylases (HDACs), one of the most important epigenetic regulators, play prominent roles in plant growth and development as well as abiotic stress responses. Nevertheless, the systematical characterization and critical roles of HDAC gene members in thermogenesis remains elusive in radish.

View Article and Find Full Text PDF

LINC01094 promotes gastric cancer through dual targeting of CDKN1A by directly binding RBMS2 and HDAC1.

Biol Direct

December 2024

Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214062, Jiangsu Province, China.

Background: Accumulating studies have focused on long noncoding RNAs (lncRNAs) because of their regulatory effects on multiple cancers. However, the biological functions and molecular mechanisms of lncRNAs in gastric cancer (GC) remain to be elucidated in depth.

Methods: Long intergenic nonprotein coding RNA 1094 (LINC01094), a differentially expressed lncRNA between GC tissues and adjacent normal tissues, was identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!