Neurodegenerative and neuroinflammatory disorders are commonly associated with local chemokine release. In other way, emerging data indicate that the prostaglandin E2 (PGE(2)), one of the major prostaglandins produced in the brain, play a central role in several pathological diseases. In this study, we investigated the relationship between CXCL12, cyclooxygenase (COX)-2 and PGE(2) in human brain cells. CXCL12 induced COX-2 and secretion of PGE(2) in a dose-dependent manner in human astrocytes. This induction was abolished by treatment with pertussis toxin and AMD3100, confirming the role of CXCR4 signaling. The nuclear factor-kappaB involvement was confirmed by using pyrrolidine dithiocarbamate, and with transient transfection assays. Over-expression of inhibitory proteins of nuclear factor-kappaB abrogated COX-2 induction, and CXCL12 induced p65/relA translocation. Culture supernatants from CXCL12-treated astrocytes reduced viability of neuroblastoma cells, and COX inhibitors abrogated this toxicity. Therefore, the relationship between chemokines and PGs could differentially influence the pathogenic network responsible for neurodegeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-4159.2010.06646.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!