1. We present a statistical analysis of the scaling of resting (basal) metabolic rate, BMR, with body mass, B(m) and body temperature, T(b), in mammals. 2. Whilst the majority of the variance in ln BMR is explained by ln B(m), the T(b) term is statistically significant. The best fit model was quadratic, indicating that the scaling of ln BMR with ln B(m) varies with body size; the value of any scaling exponent estimated for a sample of mammals will therefore depend on the size distribution of species in the study. This effect can account for much of the variation in scaling exponents reported in the literature for mammals. 3. In all models, inclusion of T(b) reduced the strength of scaling with ln B(m). The model including T(b) suggests that birds and mammals have a similar underlying thermal dependence of BMR, equivalent to a Q(10) of 2.9 across the range of T(b) values 32-42 degrees C. 4. There was significant heterogeneity in both the mass scaling exponent and mean BMR across mammalian orders, with a tendency for orders dominated by larger taxa to have steeper scaling exponents. This heterogeneity was particularly marked across orders with smaller mean B(m) and the taxonomic composition of the sample will thus also affect the observed scaling exponent. After correcting for the effects of ln B(m) and T(b), Soricomorpha, Didelphimorphia and Artiodactyla had the highest BMR of those orders represented by more than 10 species in the data set. 5. Inclusion of T(b) in the model removed the effect of diet category evident from a model in ln B(m) alone and widely reported in the literature; this was caused by a strong interaction between diet category and T(b) in mammals. 6. Inclusion of mean ambient temperature, T(a), in the model indicated a significant inverse relationship between ln BMR and T(a), complicated by an interaction between T(a) and T(b). All other things being equal, a polar mammal living at -10 degrees C has a body temperature approximately 2.7 degrees C warmer and a BMR higher by approximately 40% than a tropical mammal of similar size living at 25 degrees C.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2656.2010.01672.x | DOI Listing |
NPJ Digit Med
January 2025
Digital Medicine Society, Boston, MA, USA.
We propose the addition of usability validation to the extended V3 framework, now "V3+", and describe a pragmatic approach to ensuring that sensor-based digital health technologies can be used optimally at scale by diverse users. Alongside the original V3 components (verification; analytical validation; clinical validation), usability validation will ensure user-centricity of digital measurement tools, paving the way for more inclusive, reliable, and trustworthy digital measures within clinical research and clinical care.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemical Engineering, Stanford University, Stanford, CA 94305.
The crowded bacterial cytoplasm is composed of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial genetically encoded multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-3,240 to +2,700 e) in live cells.
View Article and Find Full Text PDFDokl Biochem Biophys
January 2025
Bakulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russia.
The study presents a numerical parametric investigation of flow structures in channels with a longitudinal-radial profile zR = Const and a spherical dome at the base. The goal of the study was to examine the flow structures in these channels depending on the exponent N of the profile and the height of the dome, to determine the conditions that provide optimal centripetal swirling flow, analogous to blood flow in the heart chambers and major vessels. The investigation was conducted using a comparative analysis of flow structures in channel configurations zR = Const, carried out in two stages.
View Article and Find Full Text PDFAntibodies (Basel)
December 2024
Eli Lilly and Company, Lilly Corporate Center Indianapolis, Indianapolis, IN 46285, USA.
Background: The prediction of human clearance (CL) and subcutaneous (SC) bioavailability is a critical aspect of monoclonal antibody (mAb) selection for clinical development. While monkeys are a well-accepted model for predicting human CL, other preclinical species have been less-thoroughly explored. Unlike CL, predicting the bioavailability of SC administered mAbs in humans remains challenging as contributing factors are not well understood, and preclinical models have not been systematically evaluated.
View Article and Find Full Text PDFProc Biol Sci
January 2025
School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
In animals, metabolic rates during ontogeny often scale differently from the way they do in cross-species or population comparisons, with near-isometric scaling patterns more often observed during juvenile growth. In multiple social insect taxa, colony metabolic rate scales hypometrically across species or populations at the same developmental stage, but metabolic patterns during ontogeny have not been examined for any social insect species. We performed the first ontogenetic study of social metabolic scaling in harvester ant colonies () over 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!