The heterologous protein expression system of Pichia pastoris is now widely used for expression of many human proteins, because the efficiently expressed proteins will be correctly folded in Pichia pastoris cells and also efficiently secreted from the cells. Recombinant human serum albumin (rHSA) is efficiently secreted from Pichia pastoris. Nowadays, the expression of rHSA exceeds 10g in 1 L fermentor culture broth, and the protein is completely purified. Recombinant HSA expressed in Pichia pastoris was approved as a medicine by the authorities in 2007, and launched in 2008 in Japan. One of the insulin precursors (IP) was also successfully expressed in Pichia pastoris, and secreted up to 3.6g in 1 L medium using a multi-copy transformant. The insulin precursor could be efficiently converted to insulin, the final product, in vitro. Human growth hormone was also expressed in Pichia pastoris, and secreted up to 49 mg in 1 L medium. These proteins are also important for clinical applications. Midkine and pleiotrophin may be two of the candidates for clinical applications. Secretion signals, the copy number of an expression cassette in transformants, and culture conditions for fermentation were examined for efficient expression of these proteins in Pichia pastoris. The best signal was selected, and other factors were optimized. The amounts of native midkine and native pleiotrophin expressed were approximately 0.36g and 0.26g in 1 L medium, respectively. Expression of bile-salt stimulated lipase (BSSL) had been extremely low in the beginning of a fermentor culture experiment. However, approximately 1 g rBSSL in 1 L medium was finally expressed in a fermentor by unlimited feeding of glycerol for cell growth and optimization of other factors. BSSL from human milk and rBSSL from Pichia cells are glycosylated. The structure differences between these glycans are obvious. When humanization of Pichia glycans is established by genetic engineering, the Pichia pastoris expression system will become indispensable for the production of therapeutic proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/187220810791110679 | DOI Listing |
FEBS J
January 2025
Department of Biotechnology, The University of Tokyo, Japan.
Acetyl xylan esterase plays a crucial role in the degradation of xylan, the major plant hemicellulose, by liberating acetic acid from the backbone polysaccharides. Acetyl xylan esterase B from Aspergillus oryzae, designated AoAxeB, was biochemically and structurally investigated. The AoAxeB-encoding gene with a native signal peptide was successfully expressed in Pichia pastoris as an active extracellular protein.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Carrer de les Sitges, s/n, 08193 Bellaterra, Catalonia, Spain.
The introduction of heterologous pathways into microbial cell compartments offers several potential advantages, including increasing enzyme concentrations and reducing competition with native pathways, making this approach attractive for producing complex metabolites like fatty acids and fatty alcohols. However, measuring subcellular concentrations of these metabolites remains technically challenging. Here, we explored 3-hydroxypropionic acid (3-HP), readily quantifiable and sharing the same precursors-acetyl-CoA, NADPH, and ATP-with the above-mentioned products, as a reporter metabolite for peroxisomal engineering in the yeast .
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
January 2025
Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Glucose oxidase (GOD) is an oxygen-consuming dehydrogenase that can catalyze the production of gluconic acid hydrogen peroxide from glucose, and its specific mechanism of action makes it promising for applications, while the low catalytic activity and poor thermostability have become the main factors limiting the industrial application of this enzyme. In this study, we used the glucose oxidase GOD reported with the best thermostability as the source sequence for phylogenetic analysis to obtain the GOD with excellent performance. Six genes were screened and successfully synthesized for functional validation.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Biochemistry, Indian Institute of Science, Bangalore 560012, INDIA. Electronic address:
The zinc finger transcription factor Mxr1 (methanol expression regulator 1) of the methylotrophic yeast Komagataella phaffii (formerly Pichia pastoris) harbors a DNA-binding domain (DBD) consisting of two CH zinc fingers (Mxr1ZF) between amino acids 36-101 and a previously identified nine amino acid transactivation domain (9aaTAD) between residues 365-373 (TAD A, QELESSLNA). Beyond this, 21 putative 9aaTADs (designated TAD B-V) located between amino acids 401-1155 remain to be characterized. Here, we demonstrate that a compact synthetic transcription factor composed of Mxr1ZF and three tandem copies of TAD A can activate the transcription of Mxr1 target genes for ethanol and methanol metabolism with specificity and efficiency comparable to the full-length protein.
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China. Electronic address:
Polybutylene succinate (PBS), a biodegradable plastic, can be used as an alternative to traditional plastics to effectively solve the growing plastic pollution. Although PBS is theoretically completely biodegradable, slow degradation remains a problem in practical applications, leading to the possibility of environmental pollution. In this study, after the PBS degradation ability of the fungus Paraphoma chrysanthemicola was determined, a P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!