An increased interest in metabolite profiling is driving the need for improved analytical techniques with greater performance for a variety of important applications. Despite their limited sensitivity, nuclear magnetic resonance (NMR) methods are attractive because of their simplicity, reproducibility, quantitative nature, and wide applicability. The use of chemoselective isotopic tags has the potential to advance the application of NMR for analyzing metabolites in complex biofluids by allowing detection of metabolites down to the low micromoalr level with high resolution and specificity. Here, we report a new (13)C-tagging method using (13)C-formic acid that delivers high sensitivity, good quantitation, and excellent resolution for (1)H-(13)C 2D NMR profiling of amino metabolites. High reproducibility (coefficient of variation (CV) = 2%) was observed for metabolites in urine with concentrations down to 10 microM. As amino compounds comprise an important class of metabolites and small molecules of biological roles, this new method therefore should be amenable to a variety of applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2837761PMC
http://dx.doi.org/10.1021/ac9024818DOI Listing

Publication Analysis

Top Keywords

nuclear magnetic
8
magnetic resonance
8
profiling amino
8
amino metabolites
8
variety applications
8
metabolites
6
13c-formylation improved
4
improved nuclear
4
resonance profiling
4
metabolites biofluids
4

Similar Publications

High-performance and cost-effective hole-collecting materials (HCMs) are indispensable for commercially viable perovskite solar cells (PSCs). Here, we report an anchorable HCM composed of a triazatruxene core connected with three alkyl carboxylic acid groups (). In contrast to the phosphonic acid-containing tripodal analog (), molecules can form a hydrophilic monolayer on a transparent conducting oxide surface, which is beneficial for subsequent perovskite film deposition in the traditional layer-by-layer fabrication process.

View Article and Find Full Text PDF

In single cells, variably sized nanoscale chromatin structures are observed, but it is unknown whether these form a cohesive framework that regulates RNA transcription. Here, we demonstrate that the human genome is an emergent, self-assembling, reinforcement learning system. Conformationally defined heterogeneous, nanoscopic packing domains form by the interplay of transcription, nucleosome remodeling, and loop extrusion.

View Article and Find Full Text PDF

Unconventional Imaging Methods in Psoriatic Arthritis.

Curr Rheumatol Rep

January 2025

Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Purpose Of Review: Psoriatic arthritis (PsA) is a complex heterogeneous inflammatory disease that affects about one-third of patients with psoriasis. PsA leads to significant physical impairment and reduced quality of life. Therefore, early diagnosis and intervention are critical for improving long-term outcomes.

View Article and Find Full Text PDF

Topological magnetic skyrmions with helicity state degrees of freedom in centrosymmetric magnets possess great potential for advanced spintronics applications and quantum computing. Till date, the skyrmion study in this class of materials mostly remains focused to collinear ferromagnets with uniaxial magnetic anisotropy. Here, we present a combined theoretical and experimental study on the competing magnetic exchange-induced evolution of noncollinear magnetic ground states and its impact on the skyrmion formation in a series of centrosymmetric hexagonal noncollinear magnets, MnFeCoGe.

View Article and Find Full Text PDF

Purpose To validate a deep learning (DL) model for predicting the risk of prostate cancer (PCa) progression based on MRI and clinical parameters and compare it with established models. Materials and Methods This retrospective study included 1607 MRI scans of 1143 male patients (median age, 64 years; IQR, 59-68 years) undergoing MRI for suspicion of clinically significant PCa (csPCa) (International Society of Urological Pathology grade > 1) between January 2012 and May 2022 who were negative for csPCa at baseline MRI. A DL model was developed using baseline MRI and clinical parameters (age, prostate-specific antigen [PSA] level, PSA density, and prostate volume) to predict the time to PCa progression (defined as csPCa diagnosis at follow-up).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!