Aim: To investigate the preparation, physicochemical characterization and cytotoxicity in vitro of Gemcitabine-loaded poly(ethylene glycol)-block-poly(D,L-lactide) (PEG-PDLLA) nanovesicles.

Methods: The nanovesicle carriers were prepared from the amphiphilic block copolymer of PEG-PDLLA by a double emulsion technique, and gemcitabine was used as the model drug. The morphology of the nanovesicles was determined by scanning and transmission electron microscopy, and the drug content, drug entrapment and drug-release curve in vitro were detected by UV-Vis-NIR spectrophotometry. Cytotoxicity in the human pancreatic cancer cell line SW1990 was tested by 3-(4,5-dimethyl) ethiazole (MTT) assay.

Results: The gemcitabine-loaded nanovesicles were hollow nanospheres with a mean size of 200.6 nm, drug loading of 4.14% and drug embedding ratio of 20.54%. The nanovesicles showed excellent controlled release that was characterized by a fast initial release during the first 72 h, followed by a slower and continuous release. The MTT assay demonstrated that gemcitabine-loaded nanovesicles exhibited dose-dependent and time-delayed cytotoxicity in the human pancreatic cancer cell line SW1990.

Conclusion: Gemcitabine-loaded PEG-PDLLA nanovesicles prepared by a double emulsion technique exhibited good performance for controlled drug release, and had similar cytotoxic activity to free gemcitabine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828587PMC
http://dx.doi.org/10.3748/wjg.v16.i8.1008DOI Listing

Publication Analysis

Top Keywords

preparation physicochemical
8
physicochemical characterization
8
characterization cytotoxicity
8
cytotoxicity vitro
8
vitro gemcitabine-loaded
8
gemcitabine-loaded peg-pdlla
8
peg-pdlla nanovesicles
8
double emulsion
8
emulsion technique
8
cytotoxicity human
8

Similar Publications

This paper presented the preparation, characterization, and adsorption properties of Brazil nut shell activated carbon for catechol removal from aqueous solutions. The equilibrium adsorption of catechol molecules on this activated was experimentally quantified at pH 6 and temperatures ranging from 25 to 55 °C, and at 25 °C and pH ranging from 6 to 10. These results were utilized to elucidate the role of surface functionalities through statistical physics calculations.

View Article and Find Full Text PDF

The increasing prevalence of dental pathogens and oral cancer calls for new therapeutic agents. Nanoparticle (NPs) based tumor therapy enables precise targeting and controlled drug release, improving anti-cancer treatment efficacy while reducing systemic toxicity. Zinc oxide NPs (ZnO NPs) are notable in nanomedicine for their exceptional physicochemical and biological properties.

View Article and Find Full Text PDF

Purpose: This study aimed to develop a solid self-nanoemulsifying drug delivery system (SNEDDS) and surface-coated microspheres to improve the oral bioavailability of niclosamide.

Methods: A solubility screening study showed that liquid SNEDDS, prepared using an optimized volume ratio of corn oil, Cremophor RH40, and Tween 80 (20:24:56), formed nanoemulsions with the smallest droplet size. Niclosamide was incorporated into this liquid SNEDDS and spray-dried with calcium silicate to produce solid SNEDDS.

View Article and Find Full Text PDF

The effects of filter fabrication approaches on photocatalytic abatement of formaldehyde in an indoor environment using a TiO-based air purifier system.

Environ Res

December 2024

Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea. Electronic address:

Titanium dioxide (TiO) is the most commonly used catalyst for fabricating commercial photocatalytic air purifier (AP) systems. The AP performance can be affected sensitively by the preparation conditions of filters and the physicochemical properties (e.g.

View Article and Find Full Text PDF

In the present study, biopolymer (chitosan and alginate)-reinforced rhamnolipid nanoparticles were prepared and represented as 'ALG-RHLP-NPs' and 'CHI-RHLP-NPs'. The sizes of the nanoparticles ranged from 150 to 300 nm. The encapsulation efficiencies of ALG-RHLP-NPs and CHI-RHLP-NPs were found to be 81.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!