Bacterial spot, one of the most damaging diseases of pepper, is caused by Xanthomonas euvesicatoria. This pathogen has worldwide distribution and it is particularly devastating in tropical and sub-tropical regions where high temperatures and frequent precipitation provide ideal conditions for disease development. Three dominant resistance genes have been deployed singly and in combination in commercial cultivars, but have been rendered ineffectual by the high mutation rate or deletion of the corresponding cognate effector genes. These genes are missing in race P6, and their absence makes this race virulent on all commercial pepper cultivars. The breeding line ECW12346 is the only source of resistance to race P6 in Capsicum annuum, and displays a non-hypersensitive type of resistance. Characterization of this resistance has identified two recessive genes: bs5 and bs6. Individual analysis of these genes revealed that bs5 confers a greater level of resistance than bs6 at 25 degrees C, but in combination they confer full resistance to P6 indicating at least additive gene action. Tests carried out at 30 degrees C showed that both resistances are compromised to a significant extent, but in combination they provide almost full resistance to race P6 indicating a positive epistatic interaction at high temperatures. A scan of the pepper genome with restriction fragment length polymorphism and AFLP markers led to the identification of a set of AFLP markers for bs5. Allele-specific primers for a PCR-based bs5-marker have been developed to facilitate the genetic manipulation of this gene.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-010-1289-6DOI Listing

Publication Analysis

Top Keywords

recessive genes
8
resistance
8
bacterial spot
8
high temperatures
8
resistance race
8
full resistance
8
aflp markers
8
genes
6
characterization recessive
4
genes controlling
4

Similar Publications

Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes.

View Article and Find Full Text PDF

Biallelic variants in SREBF2 cause autosomal recessive spastic paraplegia.

J Genet Genomics

January 2025

Department of Medical Genetics and Center for Rare Diseases, the Second Affiliated Hospital of Zhejiang University School of Medicine, and Zhejiang Key Laboratory of Rare Diseases for Precision Medicine and Clinical Translation, Hangzhou, Zhejiang 310009, China; Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang 311100, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310012, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China; Lead contact. Electronic address:

Hereditary spastic paraplegias (HSPs) refer to a genetically and clinically heterogeneous group of neurodegenerative disorders characterized by the degeneration of motor neurons. To date, a significant number of patients still have not received a definite genetic diagnosis. Therefore, identifying unreported causative genes continues to be of great importance.

View Article and Find Full Text PDF

Introduction: Newborn screening (NBS) programs for a defined set of eligible diseases have been enormously successful, but genomic NBS allowing for detection of additional treatable disorders has not been broadly implemented. All 3 types of primary hyperoxaluria (PH1-3) are rare autosomal recessive diseases caused by distinct defects of glyoxylate metabolism that are diagnosed genetically with certainty. Early diagnosis and treatment are mandatory to avoid renal failure or sequalae associated with persistent hyperoxaluria.

View Article and Find Full Text PDF

Powdery mildew, caused by the fungus , is one of the primary causes of grape yield loss across the globe. While numerous resistance loci have been identified in various grapevine species, the genetic determinants of susceptibility to remain largely unexplored. Understanding the genetics of susceptibility for pathogenesis is equally important for developing durable resistance grapevines against this pathogen.

View Article and Find Full Text PDF

Systems immunology integrates the complex endotypes of recessive dystrophic epidermolysis bullosa.

Nat Commun

January 2025

National Institute of Health and Medical Research (INSERM) UMRS-976 HIPI, Paris Cité University, Saint-Louis Hospital, 75010, Paris, France.

Endotypes are characterized by the immunological, inflammatory, metabolic, and remodelling pathways that explain the mechanisms underlying the clinical presentation (phenotype) of a disease. Recessive dystrophic epidermolysis bullosa (RDEB) is a severe blistering disease caused by COL7A1 pathogenic variants. Although underscored by animal studies, the endotypes of human RDEB are poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!