Capillarity at the nanoscale.

Chem Soc Rev

Transducers Science and Technology Group, MESA+ Institute for Nanotechnology and IMPACT Institute of Mechanics, Processes and Control, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.

Published: March 2010

In this critical review we treat the phenomenon of capillarity in nanoscopic confinement, based on application of the Young-Laplace equation. In classical capillarity the curvature of the meniscus is determined by the confining geometry and the macroscopic contact angle. We show that in narrow confinement the influence of the disjoining pressure and the related wetting films have to be considered as they may significantly change the meniscus curvature. Nanochannel based static and dynamic capillarity experiments are reviewed. A typical effect of nanoscale confinement is the appearance of capillarity induced negative pressure. Special attention is paid to elasto-capillarity and electro-capillarity. The presence of electric fields leads to an extra stress term to be added in the Young-Laplace equation. A typical example is the formation of the Taylor cone, essential in the theory of electrospray. Measurements of the filling kinetics of nanochannels with water and aqueous salt solutions are discussed. These experiments can be used to characterize viscosity and apparent viscosity effects of water in nanoscopic confinement. In the final section we show four examples of appearances of capillarity in engineering and in nature (112 references).

Download full-text PDF

Source
http://dx.doi.org/10.1039/b909101gDOI Listing

Publication Analysis

Top Keywords

nanoscopic confinement
8
young-laplace equation
8
capillarity
6
capillarity nanoscale
4
nanoscale critical
4
critical review
4
review treat
4
treat phenomenon
4
phenomenon capillarity
4
capillarity nanoscopic
4

Similar Publications

Despite recent substantial advances in water treatment, the ability to selectively degrade trace micropollutants in real waters with complex matrix components remains a grand challenge. Here we report rational crafting of graphene oxide (GO)-wrapped defective TiO2 composite catalysts that creates nanoscopic confinement over the TiO2 surface within GO, thereby enabling the selective degradation of micropollutants through effectively excluding natural organic matter (NOM) and anions from the nanoconfined catalytic sites. In contrast to unconfined counterparts, the nanoconfined composite catalysts retain high degradation efficiency when exposed to various concentrations of NOM and anions, even in real water samples.

View Article and Find Full Text PDF

Silica-based nanostructures are among the most utilized materials. However, a persistent challenge is their irreversible agglomeration upon drying and heat treatments, restricting their homogeneous colloidal re-dispersion - a mandatory requirement for diverse bio-applications. We address this bottleneck by developing a self carbo-passivation (SCP) strategy: silica nanoparticles (NPs), pre-included with the catalytic metal precursors and organosilanes undergo thermochemical conversion with highly controlled interior-to-surface segregation of nanometer-scale "carbonaceous skin patches".

View Article and Find Full Text PDF

We present molecular dynamics simulations of a chemically realistic model of 1,4-polybutadiene (PBD) in contact with curved alumina surfaces. We contrast the behavior of PBD infiltrated into alumina pores with a curvature radius of about three times the radius of gyration of the chains to its behavior next to a melt dispersed alumina rod of equal absolute curvature. These confinement types represent situations occurring in polymer melts loaded with nanoparticles due to nanoparticle aggregation.

View Article and Find Full Text PDF

We consider a water molecule under tight confinement in the small-sized fullerenes (C , C , C ) within the density functional theory (DFT) calculations with suitable exchange-correlation functionals. Such nanoscopic molecular cages provide an ideal setup to study their characteristic properties not present in the condensed phase. The water molecule entirely loses its feature of typical water when it is confined in small fullerenes of size equal to C or smaller, in which the asymmetric O-H stretching vibration occurs at a lower wavenumber than the symmetric stretching.

View Article and Find Full Text PDF

Despite widespread deployment and investigation of ultrafiltration (UF) for secondary effluent purification, the challenge of membrane fouling due to effluent organic matter (EfOM) remains formidable. This study introduced a novel pretreatment method utilizing Co nanoparticles-encapsulated carbon nanotubes activated peroxymonosulfate (Co@CNT/PMS) to degrade EfOM and mitigate membrane fouling. Characterization of Co@CNT revealed the efficient encapsulation of Co nanoparticles within nanotubes, which notably enhanced the catalytic degradation of bisphenol A and typical organics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!