Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bacterial systems offer excellent tests of how well the general theoretical predictions of ecology dynamics do or do not in fact conform to reality. We believe that the basic rules that govern the cohabitation of competing species for limited resources are the same from bacteria to man, we just don't know the rules, and that fundamental studies of the games bacteria play will give fundamental insight into the vastly more complex systems we hope to attack later. In this tutorial review we discuss how simplified micro-ecologies constructed using tools of micro and nanofabrication techniques offer some idea of how physical principles and analysis can address the issue of complex ecology dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b911230h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!