The constitutional t(11;22)(q23;q11) is a well-known recurrent non-Robertsonian translocation in humans. Although translocations generally occur in a random fashion, the break points of t(11;22)s are concentrated within several hundred base pairs on 11q23 and 22q11. These regions are characterized by palindromic AT-rich repeats (PATRRs), which appear to be responsible for the genomic instability. Translocation-specific PCR detects de novo t(11;22)s in sperm from healthy males at a frequency of 1/10(4)-10(5), but never in lymphoblasts, fibroblasts or other human somatic cell lines. This suggests that the generation of t(11;22) rearrangement is linked to gametogenesis, although female germ cells have not been tested. Here, we have studied eight cases of de novo t(11;22) to determine the parental origin of the translocation using the polymorphisms on the relevant PATRRs. All of the eight translocations were found to be of paternal origin. This result implicates a possible novel mechanism of sperm-specific generation of palindrome-mediated chromosomal translocations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2987363PMC
http://dx.doi.org/10.1038/ejhg.2010.20DOI Listing

Publication Analysis

Top Keywords

paternal origin
8
constitutional t1122q23q11
8
origin novo
4
novo constitutional
4
t1122q23q11 constitutional
4
t1122q23q11 well-known
4
well-known recurrent
4
recurrent non-robertsonian
4
non-robertsonian translocation
4
translocation humans
4

Similar Publications

Background/objectives: Prosopagnosia is the inability to recognize people by their faces. Developmental prosopagnosia is the hereditary or congenital variant of the condition. The aim of this study was to demonstrate the assessment of developmental prosopagnosia in a clinical context, using a combination of commercially available clinical assessment tools and experimental tools described in the research literature.

View Article and Find Full Text PDF

Female mammalian cells have two X chromosomes, one of maternal origin and one of paternal origin. During development, one X chromosome randomly becomes inactivated. This renders either the maternal X (X) chromosome or the paternal X (X) chromosome inactive, causing X mosaicism that varies between female individuals, with some showing considerable or complete skew of the X chromosome that remains active.

View Article and Find Full Text PDF

How parental factors shape the plant embryo.

Biochem Soc Trans

January 2025

Centre for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany.

Primary axis formation is the first step of embryonic patterning in flowering plants and recent findings highlight the importance of parent-of-origin effects in this process. Apical-basal patterning has a strong influence on suspensor development, an extra-embryonic organ involved in nutrient transport to the embryo at an early stage of seed development. The endosperm, a second fertilization product, nourishes the embryo at later stages of seed development.

View Article and Find Full Text PDF

In Alzheimer's disease (AD) research, the 5xFAD mouse model is commonly used as a heterozygote crossed with other genetic models to study AD pathology. We investigated whether the parental origin of the 5xFAD transgene affects plaque deposition. Using quantitative light-sheet microscopy, we found that paternal inheritance of the transgene led to a 2-fold higher plaque burden compared with maternal inheritance, a finding consistent across multiple 5xFAD colonies.

View Article and Find Full Text PDF

Background: Leber congenital amaurosis (LCA), the most severe form of inherited retinal dystrophy, is a rare, heterogeneous, genetic eye disease associated with severe congenital visual impairment. RPE65, one of the causative genes for LCA, encodes retinoid isomerohydrolase, an enzyme that plays a critical role in regenerating visual pigment in photoreceptor cells.

Methods: Exome sequencing (ES) was performed on a patient with suspected LCA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!