Here, we characterise new strains of normal and dystrophic (mdx) mice that overexpress Class 2 IGF-1 Ea in skeletal myofibres. We show that transgenic mice have increased muscle levels of IGF-1 (approximately 13-26 fold) and show striking muscle hypertrophy (approximately 24-56% increase in mass). Adult normal muscles were resistant to elevated IGF-1; they reached adult steady state and maintained the same mass from 3 to 12 months. By contrast, dystrophic muscles from mdx/IGF-1(C2:Ea) mice continued to increase in mass during adulthood. IGF-1 signalling was evident only in muscles that were growing as a result of normal postnatal development (23-day-old mice) or regenerating in response to endogenous necrosis (adult mdx mice). Increased phosphorylation of Akt at Ser473 was not evident in fasted normal adult transgenic muscles, but was 1.9-fold higher in fasted normal young transgenic muscles compared with age-matched wild-type controls and fourfold higher in fasted adult mdx/IGF-1(C2:Ea) compared with mdx muscles. Muscles of adult mdx/IGF-1(C2:Ea) mice showed higher p70(S6K)(Thr421/Ser424) phosphorylation and both young transgenic and adult mdx/IGF-1(C2:Ea) mice had higher phosphorylation of rpS6(Ser235/236). The level of mRNA encoding myogenin was increased in normal young (but not adult) transgenic muscles, indicating enhanced myogenic differentiation. These data demonstrate that elevated IGF-1 has a hypertrophic effect on skeletal muscle only in growth situations.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.061119DOI Listing

Publication Analysis

Top Keywords

mdx/igf-1c2ea mice
12
transgenic muscles
12
adult mdx/igf-1c2ea
12
skeletal muscle
8
muscle hypertrophy
8
mdx mice
8
mice increased
8
increase mass
8
adult
8
muscles
8

Similar Publications

Objective: Ca overload of muscle fibers is one of the factors that secondarily aggravate the development of Duchenne muscular dystrophy (DMD). The purpose of this study is to evaluate the effects of the Ca channel modulator 2-aminoethoxydiphenyl borate (APB) on skeletal muscle pathology in dystrophin-deficient mice.

Methods: Mice were randomly divided into six groups: wild type (WT), WT+3 mg/kg APB, WT+10 mg/kg APB, , +3 mg/kg APB, +10 mg/kg APB.

View Article and Find Full Text PDF

Cardio-metabolic and cytoskeletal proteomic signatures differentiate stress hypersensitivity in dystrophin-deficient mdx mice.

J Proteomics

December 2024

School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; Department of Medicine, University of Otago, Christchurch 8014, New Zealand; Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand. Electronic address:

Extreme heterogeneity exists in the hypersensitive stress response exhibited by the dystrophin-deficient mdx mouse model of Duchenne muscular dystrophy. Because stress hypersensitivity can impact dystrophic phenotypes, this research aimed to understand the peripheral pathways driving this inter-individual variability. Male and female mdx mice were phenotypically stratified into "stress-resistant" or "stress-sensitive" groups based on their response to two laboratory stressors.

View Article and Find Full Text PDF

Intrinsic Muscle Stem Cell Dysfunction Contributes to Impaired Regeneration in the mdx Mouse.

J Cachexia Sarcopenia Muscle

February 2025

Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.

Background: Duchenne muscular dystrophy (DMD) is a devastating disease characterized by progressive muscle wasting that leads to diminished lifespan. In addition to the inherent weakness of dystrophin-deficient muscle, the dysfunction of resident muscle stem cells (MuSC) significantly contributes to disease progression.

Methods: Using the mdx mouse model of DMD, we performed an in-depth characterization of disease progression and MuSC function in dystrophin-deficient skeletal muscle using immunohistology, isometric force measurements, transcriptomic analysis and transplantation assays.

View Article and Find Full Text PDF

The severity of brain comorbidities in Duchenne muscular dystrophy (DMD) depends on the mutation position within the DMD gene and differential loss of distinct brain dystrophin isoforms (i.e. Dp427, Dp140, Dp71).

View Article and Find Full Text PDF

Despite its notoriously mild phenotype, the dystrophin-deficient mdx mouse is the most common model of Duchenne muscular dystrophy (DMD). By mimicking a human DMD-associated metabolic comorbidity, hyperlipidemia, in mdx mice by inactivating the apolipoprotein E gene (mdx-ApoE) we previously reported severe myofiber damage exacerbation via histology with large fibro-fatty infiltrates and phenotype humanization with ambulation dysfunction when fed a cholesterol- and triglyceride-rich Western diet (mdx-ApoE). Herein, we performed comparative lipidomic and metabolomic analyses of muscle, liver and serum samples from mdx and mdx-ApoE mice using solution and high-resolution-magic angle spinning (HR-MAS) H-NMR spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!