Overlapping roles for Yen1 and Mus81 in cellular Holliday junction processing.

J Biol Chem

Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, United Kingdom.

Published: April 2010

Eukaryotic Holliday junction (HJ) resolvases have attracted much attention recently with the identification of at least three distinct proteins that can cleave model HJs in vitro. However, the specific DNA structure(s) that these proteins act upon in the cell is unknown. Here, we describe a system in budding yeast to directly and quantitatively monitor in vivo HJ resolution. We found that Yen1 acts redundantly with Mus81, but not Slx1, to resolve a model HJ in vivo. This functional overlap specifically extends to the repair/bypass of lesions that impede the progression of replication forks but not to the repair of double-strand breaks induced by ionizing radiation. Together, these results suggest a direct role for Yen1 in the response to DNA damage and implicate overlapping HJ resolution functions of Yen1 with Mus81 during replication fork repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857021PMC
http://dx.doi.org/10.1074/jbc.M110.108399DOI Listing

Publication Analysis

Top Keywords

yen1 mus81
8
holliday junction
8
overlapping roles
4
yen1
4
roles yen1
4
mus81 cellular
4
cellular holliday
4
junction processing
4
processing eukaryotic
4
eukaryotic holliday
4

Similar Publications

AT-rich sequence can cause structure variants such as translocations and its instability can be accelerated by replication stresses. When human 16p11.2 or 22q11.

View Article and Find Full Text PDF

Concurrent D-loop cleavage by Mus81 and Yen1 yields half-crossover precursors.

Nucleic Acids Res

July 2024

Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain.

Homologous recombination involves the formation of branched DNA molecules that may interfere with chromosome segregation. To resolve these persistent joint molecules, cells rely on the activation of structure-selective endonucleases (SSEs) during the late stages of the cell cycle. However, the premature activation of SSEs compromises genome integrity, due to untimely processing of replication and/or recombination intermediates.

View Article and Find Full Text PDF

Replication stress and abundant repetitive sequences have emerged as primary conditions underlying genomic instability in eukaryotes. To gain insight into the mechanism of recombination between repeated sequences in the context of replication stress, we used a prokaryotic Tus/Ter barrier designed to induce transient replication fork stalling near inverted repeats in the budding yeast genome. Our study reveals that the replication fork block stimulates a unique recombination pathway dependent on Rad51 strand invasion and Rad52-Rad59 strand annealing activities, Mph1/Rad5 fork remodelers, Mre11/Exo1/Dna2 resection machineries, Rad1-Rad10 nuclease and DNA polymerase δ.

View Article and Find Full Text PDF

Meiotic defects derived from incorrect DNA repair during gametogenesis can lead to mutations, aneuploidies and infertility. The coordinated resolution of meiotic recombination intermediates is required for crossover formation, ultimately necessary for the accurate completion of both rounds of chromosome segregation. Numerous master kinases orchestrate the correct assembly and activity of the repair machinery.

View Article and Find Full Text PDF

Joint molecules (JMs) are intermediates of homologous recombination (HR). JMs rejoin sister or homolog chromosomes and must be removed timely to allow segregation in anaphase. Current models pinpoint Holliday junctions (HJs) as a central JM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!