Most QSARs for dermal absorption predict the permeability coefficient, K(p), of a molecule, which is valid for infinite dose conditions. In practice, dermal exposure mostly occurs under finite dose conditions. Therefore, a simple model to predict finite dose dermal absorption from infinite dose data (K(p) and lag time) and the stratum corneum/water partition coefficient (K(SC,W)) was developed. To test the model, a series of in vitro dermal absorption experiments was performed under both infinite and finite dose conditions using acetic acid, benzoic acid, bis(2-ethylhexyl)phthalate, butoxyethanol, cortisone, decanol, diazinone, 2,4-dichlorophenol, ethacrynic acid, linolenic acid, octylparaben, oleic acid, propylparaben, salicylic acid and testosterone. For six substances, the predicted relative dermal absorption was not statistically different from the measured value. For all other substances, measured absorption was overpredicted by the model, but most of the overpredictions were still below the European default absorption value. In conclusion, our finite dose prediction model provides a useful and cost-effective estimate of dermal absorption, to be used in risk assessment for non-volatile substances dissolved in water at non-irritating concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yrtph.2010.02.008DOI Listing

Publication Analysis

Top Keywords

dermal absorption
28
finite dose
16
dose conditions
12
absorption
9
vitro dermal
8
risk assessment
8
infinite dose
8
dermal
7
dose
6
acid
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!