Background: Leptin, a 167 amino acid peptide hormone, profoundly effects reproduction exerting its biological effects via interaction with the leptin receptor (ObR) which is widely expressed on peripheral tissues. In this study, we have attempted to assess leptin receptor expression in the spermatozoa of fertile males and those diagnosed with male factor infertility; both at the mRNA or protein levels.

Methods: Semen samples were collected from fertile males and individuals with male factor infertility. In order to evaluate leptin receptor expression several techniques were utilized, including: reverse transcriptase-polymerase chain reaction (RT-PCR), immunostaining, flow cytometry, and western blotting. Mononuclear cells isolated from volunteers' peripheral blood were used as positive controls for leptin receptor expression.

Results: leptin receptor was noted on mononuclear cells but we were unable to detect this receptor on spermatozoa at the protein level. Leptin receptor expression was detected on peripheral blood mononuclear cells (PBMCs) as positive controls; however it was not detectable on the spermatozoa of both groups by immunofluorescence microscopy or flow cytometry. Furthermore, positive expression of the ObR long isoform as assessed by RT-PCR was observed in the sperm of only four cases, whereas expression of beta-Actin, a house keeping gene, and HspA2, a testis specific gene, was present in all cases.

Conclusion: The long isoform of leptin receptor may not be present on human sperm. Species difference may be accounted for diverse reproductive physiology which depends on metabolic requirement. Leptin receptor expression at the mRNA level in some individuals may be related to contamination by other cells in semen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841190PMC
http://dx.doi.org/10.1186/1477-7827-8-17DOI Listing

Publication Analysis

Top Keywords

leptin receptor
36
receptor expression
16
mononuclear cells
12
receptor
10
leptin
9
receptor human
8
fertile males
8
male factor
8
factor infertility
8
flow cytometry
8

Similar Publications

Objective: The objective of this study is to investigate the ability of Ramulus Mori (Sangzhi) alkaloid tablets (SZ-A) to ameliorate obesity and lipid metabolism disorders in rats subjected to a high-fat diet (HFD) through metagenomics, untargeted lipidomics, targeted metabolism of bile acid (BA), and BA pathways, providing a novel perspective on the management of metabolic disorders.

Methods: In this research, HFD-fed rats were concurrently administered SZ-A orally. We measured changes in body weight (BW), blood lipid profiles, and liver function to assess therapeutic effects.

View Article and Find Full Text PDF

Introduction: Infants of diabetic mothers (IDMs) may exhibit decreased oral intake, requiring nasogastric feedings and prolonged hospitalization. The objective of this study was to explore whether saliva serves as an informative biofluid for detecting expression of hunger signaling and energy homeostasis modulator genes and to perform exploratory analyses examining expression profiles, body composition, and feeding outcomes in late preterm and term IDMs and infants born to mothers with normoglycemia during pregnancy.

Methods: In this prospective cohort pilot study, infants born at ≥ 35 weeks' gestation to mothers with gestational or type II diabetes (IDM cohort) and normoglycemic mothers (control cohort) were recruited.

View Article and Find Full Text PDF

IDOL alleviates the body weight by upregulating UCP-1 in mice.

Diabetes Obes Metab

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China.

Background: Given the potential role of brown adipose tissue (BAT) in stimulating energy expenditure, activating BAT can be an effective anti-obesity treatment. Here, we aimed to use adenoviruses to establish the effect of the inducible degrader of the low density lipoprotein receptor (IDOL) in the formation of BAT.

Methods: IDOL or green fluorescent protein was overexpressed by adenovirus and injected into the scapula of C57BL/6J mice and fed with high-fat diet for 12 weeks.

View Article and Find Full Text PDF

Genotype frequency analysis of rs2025804 genetic variant in Iranian population.

J Diabetes Metab Disord

June 2025

Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, No. 10- Jalal -e-Ale-Ahmad Street, Chamran Highway, Tehran, 1411713119 Iran.

Objectives: The gene is a key focus in obesity research, with studies linking its polymorphisms to various diseases like polycystic ovarian syndrome and energy intake disorders. This study aims to investigate the prevalence of the rs2025804 variant within LEPR and its distribution among healthy individuals across diverse ethnic groups in Iran.

Methods: The frequency of the rs2025804 genotype in the gene was analyzed in 1142 healthy adults representing different ethnicities in Iran.

View Article and Find Full Text PDF

Low expression of Frataxin might contribute to diabetic peripheral neuropathy in a mouse model.

Biochem Biophys Res Commun

January 2025

Yancheng Clinical College, Xuzhou Medical University, Yancheng, 224000, PR China. Electronic address:

Diabetes is one of the most prevalent metabolic disorders, and its incidence has been experiencing a steady annual rise in recent years. Diabetic peripheral neuropathy (DPN) represents the most frequent adverse complication, exerting a profound impact on the quality of life for those suffering from diabetes. The etiology of DPN is complex, including impaired mitochondrial function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!