The ability of cancer cells to escape from the natural or immunotherapy-induced antitumor immune response is often associated with alterations in the tumor cell surface expression of Major Histocompatibility Complex (MHC) Class I antigens. Considerable knowledge has been gained on the prevalence of various patterns of MHC Class I defects and the underlying molecular mechanisms in different types of cancer. In contrast, few data are available on the changes in MHC Class I expression happening during the course of cancer immunotherapy. We have recently proposed that the progression or regression of a tumor lesion in cancer patients undergoing immunotherapy could be predetermined by the molecular mechanism responsible for the MHC Class I alteration and not by the type of immunotherapy used, i.e., interleukin-2 (IL-2), Bacillus Calmette-Guèrin (BCG), interferon-alpha (IFN-alpha), peptides alone, dendritic cells loaded with peptides, protein-bound polysaccharide etc. If the molecular alteration responsible for the changes in MHC Class I expression is reversible by cytokines ("soft" lesion), the MHC Class I expression will be upregulated, the specific T cell-mediated response will increase and the lesion will regress. However, if the molecular defect is structural ("hard" lesion), the MHC Class I expression will remain low, the escape mechanism will prevail and the primary tumor or the metastatic lesion will progress. According to this idea, the nature of the preexisting MHC Class I lesion in the cancer cell has a crucial impact determining the final outcome of cancer immunotherapy. In this article, we discuss the importance of these two types of molecular mechanisms of MHC Class I-altered expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ijc.25270 | DOI Listing |
Glia
January 2025
Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland.
Glia antigen-presenting cells (APCs) are pivotal regulators of immune surveillance within the retina, maintaining tissue homeostasis and promptly responding to insults. However, the intricate mechanisms underlying their local coordination and activation remain unclear. Our study integrates an animal model of retinal injury, retrospective analysis of human retinas, and in vitro experiments to gain insights into the crucial role of antigen presentation in neuroimmunology during retinal degeneration (RD), uncovering the involvement of various glial cells, notably Müller glia and microglia.
View Article and Find Full Text PDFFront Immunol
January 2025
Dermatology Hospital, Southern Medical University, Guangzhou, China.
Background: Fibrotic skin disease represents a major global healthcare burden, characterized by fibroblast hyperproliferation and excessive accumulation of extracellular matrix components. The immune cells are postulated to exert a pivotal role in the development of fibrotic skin disease. Single-cell RNA sequencing has been used to explore the composition and functionality of immune cells present in fibrotic skin diseases.
View Article and Find Full Text PDFAllergy
January 2025
Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
Background: IgE-mediated food allergy is accompanied by mucosal mast cell (MMC) hyperplasia in the intestinal mucosa. Intestinal MMC numbers correlate with the severity of food allergy symptoms. However, the mechanisms by which MMCs proliferate excessively are poorly understood.
View Article and Find Full Text PDFFront Mol Neurosci
January 2025
Neurology Clinic, Military Institute of Medicine- National Research Institute, Warsaw, Poland.
Multiple sclerosis (MS) is a chronic central nervous system (CNS) disease with demyelinating inflammatory characteristics. It is the most common nontraumatic and disabling disease affecting young adults. The incidence and prevalence of MS have been increasing.
View Article and Find Full Text PDFMol Med
January 2025
Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
The incidence of obesity is increasing annually worldwide. A high-fat diet (HFD) causes intestinal barrier damage, but effective interventions are currently unavailable. Our previous work demonstrated the therapeutic effect of nobiletin on obese mice; thus, we hypothesized that nobiletin could reverse HFD-induced damage to the intestinal barrier.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!