Human embryonic stem (hES) cells were originally isolated and maintained on mouse embryonic fibroblast (MEF) feeder layers in the presence of fetal bovine serum (FBS). However, if the hES cells are to be used for therapeutic applications, it is preferable to regulatory authorities that they be derived and cultured in animal-free conditions to prevent mouse antigen contamination that would exacerbate an immune response to foreign proteins, and the potential risk of transmission of retroviral and other zoonotic pathogens to humans. As a step towards this goal, we derived a new hES cell line (MISCES-01) on human adult skin fibroblasts as feeder cells using serum replacement (SR) medium. The MISCES-01 cells have a normal diploid karyotype (46XX), express markers of pluripotency (OCT4, GCTM-2, TRA-1-60, TRA-1-81, SSEA-3, SSEA-4, and alkaline phosphatase) and following in vitro and in vivo differentiation, give rise to derivatives of the three primary germ layers. This cell line can be obtained for research purposes from the Australian Stem Cell Centre (http://www.stemcellcentre.edu.au).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11626-010-9278-2 | DOI Listing |
Epigenetics Chromatin
January 2025
Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361, Bron, F-69500, France.
Post-translational modifications of histone H3 on lysine 9, specifically acetylation (H3K9ac) and tri-methylation (H3K9me3), play a critical role in regulating chromatin accessibility. However, the role of these modifications in lineage segregation in the mammalian blastocyst remains poorly understood. We demonstrate that di- and tri-methylation marks, H3K9me2 and H3K9me3, decrease during cavitation and expansion of the rabbit blastocyst.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 34988, Israel. Electronic address:
The elimination of superfluous neurons via apoptosis and subsequent glial phagocytosis is crucial for the development of the central nervous system (CNS). In Drosophila, two glial phagocytic receptors, six-microns-under (SIMU) and Draper, mediate the phagocytosis of apoptotic neurons during embryogenesis. However, in simu;draper double-mutant embryos, some apoptotic neurons are still engulfed by the glia, suggesting the involvement of additional receptors.
View Article and Find Full Text PDFNPJ Regen Med
January 2025
Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, USA.
Cardiomyocytes (CMs) lost during ischemic cardiac injury cannot be replaced due to their limited proliferative capacity. Calcium is an important signal transducer that regulates key cellular processes, but its role in regulating CM proliferation is incompletely understood. Here we show a robust pathway for new calcium signaling-based cardiac regenerative strategies.
View Article and Find Full Text PDFJ Thromb Haemost
January 2025
Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom; Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom. Electronic address:
Background: The thromboxane A2 receptor (TPαR) plays an important role in the amplification of platelet responses during thrombosis. Receptor activity is regulated by internalization and receptor desensitization. The mechanism by which constitutive surface expression of the TPαR is regulated is unknown.
View Article and Find Full Text PDFProtein Expr Purif
January 2025
Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA. Electronic address:
E6AP/UBE3A is the founding member of the HECT (Homologous to the E6-AP Carboxyl Terminus) ubiquitin E3 ligase family, which add ubiquitin post-translationally to protein substrates. E6AP has been structurally defined in complex with human papillomavirus (HPV) oncoprotein E6 and its gain-of-function substrate tumor suppressor p53; however, there is currently no report of E6AP being expressed and purified from mammalian cells, as studies to date have isolated E6AP from E. coli or insect cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!