Image processing of a fundus image is performed for the early detection of diabetic retinopathy. Recently, several studies have proposed that the use of a morphological filter may help extract hemorrhages from the fundus image; however, extraction of hemorrhages using template matching with templates of various shapes has not been reported. In our study, we applied hue saturation value brightness correction and contrast-limited adaptive histogram equalization to fundus images. Then, using template matching with normalized cross-correlation, the candidate hemorrhages were extracted. Region growing thereafter reconstructed the shape of the hemorrhages which enabled us to calculate the size of the hemorrhages. To reduce the number of false positives, compactness and the ratio of bounding boxes were used. We also used the 5 × 5 kernel value of the hemorrhage and a foveal filter as other methods of false positive reduction in our study. In addition, we analyzed the cause of false positive (FP) and false negative in the detection of retinal hemorrhage. Combining template matching in various ways, our program achieved a sensitivity of 85% at 4.0 FPs per image. The result of our research may help the clinician in the diagnosis of diabetic retinopathy and might be a useful tool for early detection of diabetic retinopathy progression especially in the telemedicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3092039 | PMC |
http://dx.doi.org/10.1007/s10278-010-9274-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!