This study was designed to investigate variation in Varian's Physical and Enhanced Dynamic Wedge Factors (WF) as a function of depth and field size. The profiles for physical wedges (PWs) and enhanced dynamic wedges (EDWs) were also measured using LDA-99 array and compared for confirmation of EDW angles at different depths and field sizes. WF measurements were performed in water phantom using cylindrical 0.66 cc ionization chamber. WF was measured by taking the ratio of wedge and open field ionization data. A normalized wedge factor (NWF) was introduced to circumvent large differences between wedge factors for different wedge angles. A strong linear dependence of PW Factor (PWF) with depth was observed. Maximum variation of 8.9% and 4.1% was observed for 60 degrees PW with depth at 6 and 15 MV beams respectively. The variation in EDW Factor (EDWF) with depth was almost negligible and less than two per cent. The highest variation in PWF as a function of field size was 4.1% and 3.4% for thicker wedge (60 degrees ) at 6 and 15 MV beams respectively and decreases with decreasing wedge angle. EDWF shows strong field size dependence and significant variation was observed for all wedges at both photon energies. Differences in profiles between PW and EDW were observed on toe and heel sides. These differences were dominant for larger fields, shallow depths, thicker wedges and low energy beam. The study indicated that ignoring depth and field size dependence of WF may result in under/over dose to the patient especially doing manual point dose calculation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2825002 | PMC |
http://dx.doi.org/10.4103/0971-6203.57116 | DOI Listing |
Sci Rep
December 2024
Canada Centre for Remote Sensing, Canada Centre for Mapping and Earth Observation, Natural Resources Canada, 580 Booth Street, Ottawa, ON, K1A 0E4, Canada.
Permafrost ground temperature and its spatial distribution are usually calculated using one-dimensional models based on heat flow in the vertical direction. Here, we theoretically calculated the impacts of lateral conductive heat flow on ground temperature under equilibrium and transient conditions. The results show that lateral heat flow has strong impacts on ground temperature, especially in deep ground.
View Article and Find Full Text PDFNat Commun
December 2024
Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
Two-dimensional (2D) metal-organic framework (MOF) nanosheet membranes hold promise for exact molecular transfer due to their structural diversity and well-defined in-plane nanochannels. However, achieving precise regulation of stacking modes between neighboring nanosheets in membrane applications and understanding its influence on separation performance remains unrevealed and challenging. Here, we propose a strategy for accurately controlling the stacking modes of MOF nanosheets via linker polarity regulation.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Materials Science and NanoEngineering and the Rice Advanced Materials Institute, Rice University, Houston, TX, 77005, USA.
As the feature size of microelectronic circuits is scaling down to nanometer order, the increasing interconnect crosstalk, resistance-capacitance (RC) delay and power consumption can limit the chip performance and reliability. To address these challenges, new low-k dielectric (k < 2) materials need to be developed to replace current silicon dioxide (k = 3.9) or SiCOH, etc.
View Article and Find Full Text PDFJ Anim Ecol
December 2024
Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, UK.
In social animals, group dynamics profoundly influence collective behaviours, vital in processes like information sharing and predator vigilance. Disentangling the causes of individual-level variation in social behaviours is crucial for understanding the evolution of sociality. This requires the estimation of the genetic and environmental basis of these behaviours, which is challenging in uncontrolled wild populations.
View Article and Find Full Text PDFFront Oncol
December 2024
Experimental Center for Teaching, Hebei Medical University, Shijiazhuang, Hebei, China.
Lung cancer, as a serious threat to human health and life, necessitating urgent treatment and intervention. In this study, we prepared hyaluronic acid (HA)-targeted topotecan liposomes for site-specific delivery to tumor cells. The encapsulation efficiency, stability, chemical structure, and morphology of HA-targeted topotecan liposomes were studied, and the release properties, cellular uptake capacity, and therapeutic efficacy of topotecan were further investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!