Objectives: To develop and evaluate a fast, objective and standardized method for image processing of dynamic contrast enhanced MRI of the prostate based on principal component analysis (PCA).

Materials And Methods: The study was approved by the institutional internal review board; signed informed consent was obtained. MRI of the prostate at 3 Tesla was performed in 21 patients with biopsy proven cancers before radical prostatectomy. Seven 3-dimensional gradient echo datesets, 2 pre and 5 post-gadopentetate dimeglumine injection (0.1 mmol/kg), were acquired within 10.5 minutes at high spatial resolution. PCA of dynamic intensity-scaled (IS) and enhancement-scaled (ES) datasets and analysis by the 3-time points (3TP) method were applied using the latter method for adjusting the PCA eigenvectors.

Results: PCA of 7 IS datasets and 6 ES datasets yielded their corresponding eigenvectors and eigenvalues. The first IS-eigenvector captured the major part of the signal variance because of a signal change between the precontrast and the first postcontrast arising from the inhomogeneous surface coil reception profile. The next 2 IS-eigenvectors and the 2 dominant ES-eigenvectors captured signal changes because of tissue contrast-enhancement, whereas the remaining eigenvectors captured noise changes. These eigenvectors were adjusted by rotation to reach congruence with the wash-in and wash-out kinetic parameters defined according to the 3TP method. The IS and ES-eigenvectors and rotation angles were highly reproducible across patients enabling the calculation of a general rotated eigenvector base that served to rapidly and objectively calculate diagnostically relevant projection coefficient maps for new cases. We found for the a priori selected prostate cancer patients that the projection coefficients of the IS-2nd eigenvector provided a higher accuracy for detecting biopsy proven cancers (94% sensitivity, 67% specificity, 80% ppv, and 89% npv) than the projection coefficients of the ES-2nd rotated and non rotated eigenvectors.

Conclusions: PCA adjusted to correlate with physiological parameters selects a dominant eigenvector, free of the inhomogeneous radio-frequency field reception-profile and noise-components. Projection coefficient maps of this eigenvector provide a fast, objective, and standardized means for visualizing prostate cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1097/RLI.0b013e3181d0a02fDOI Listing

Publication Analysis

Top Keywords

prostate cancer
12
principal component
8
component analysis
8
dynamic contrast
8
contrast enhanced
8
enhanced mri
8
fast objective
8
objective standardized
8
mri prostate
8
biopsy proven
8

Similar Publications

Introduction: Undiagnosed chronic disease has serious health consequences, and variation in rates of underdiagnosis between populations can contribute to health inequalities. We aimed to estimate the level of undiagnosed disease of 11 common conditions and its variation across sociodemographic characteristics and regions in England.

Methods: We used linked primary care, hospital and mortality data on approximately 1.

View Article and Find Full Text PDF

The purpose of this systematic review was to evaluate the role of PSMA PET/CT in intermediate-risk prostate cancer (PCa) patients, to determine whether it could help improve treatment strategy and prognostic stratification. A systematic literature search up to May 2024 was conducted in the PubMed, Embase and Scopus databases. Articles with mixed risk patient populations, review articles, editorials, letters, comments, or case reports were excluded.

View Article and Find Full Text PDF

Purpose: Assessing surgical skills is vital for training surgeons, but creating objective, automated evaluation systems is challenging, especially in robotic surgery. Surgical procedures generally involve dissection and exposure (D/E), and their duration and proportion can be used for skill assessment. This study aimed to develop an AI model to acquire D/E parameters in robot-assisted radical prostatectomy (RARP) and verify if these parameters could distinguish between novice and expert surgeons.

View Article and Find Full Text PDF

Objective: To evaluate the feasibility of utilizing artificial intelligence (AI)-predicted biparametric MRI (bpMRI) image features for predicting the aggressiveness of prostate cancer (PCa).

Materials And Methods: A total of 878 PCa patients from 4 hospitals were retrospectively collected, all of whom had pathological results after radical prostatectomy (RP). A pre-trained AI algorithm was used to select suspected PCa lesions and extract lesion features for model development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!