Compared with notable successes in the genetics of basic sensory transduction, progress on the genetics of higher level perception and cognition has been limited. We propose that investigating specific cognitive abilities with well-defined neural substrates, such as face recognition, may yield additional insights. In a twin study of face recognition, we found that the correlation of scores between monozygotic twins (0.70) was more than double the dizygotic twin correlation (0.29), evidence for a high genetic contribution to face recognition ability. Low correlations between face recognition scores and visual and verbal recognition scores indicate that both face recognition ability itself and its genetic basis are largely attributable to face-specific mechanisms. The present results therefore identify an unusual phenomenon: a highly specific cognitive ability that is highly heritable. Our results establish a clear genetic basis for face recognition, opening this intensively studied and socially advantageous cognitive trait to genetic investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841913 | PMC |
http://dx.doi.org/10.1073/pnas.0913053107 | DOI Listing |
J Biomed Inform
January 2025
University of Manchester, United Kingdom.
Objective: Extracting named entities from clinical free-text presents unique challenges, particularly when dealing with discontinuous entities-mentions that are separated by unrelated words. Traditional NER methods often struggle to accurately identify these entities, prompting the development of specialised computational solutions. This paper systematically reviews and presents the methodologies developed for Discontinuous Named Entity Recognition in clinical texts, highlighting their effectiveness and the challenges they face.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Psychology, The Affiliated Hospital of Jiangnan University, 214151 Wuxi, Jiangsu, China.
Background: Deficits in emotion recognition have been shown to be closely related to social-cognitive functioning in schizophrenic. This study aimed to investigate the event-related potential (ERP) characteristics of social perception in schizophrenia patients and to explore the neural mechanisms underlying these abnormal cognitive processes related to social perception.
Methods: Participants included 33 schizophrenia patients and 35 healthy controls (HCs).
Sensors (Basel)
January 2025
School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China.
With the rapid development of AI algorithms and computational power, object recognition based on deep learning frameworks has become a major research direction in computer vision. UAVs equipped with object detection systems are increasingly used in fields like smart transportation, disaster warning, and emergency rescue. However, due to factors such as the environment, lighting, altitude, and angle, UAV images face challenges like small object sizes, high object density, and significant background interference, making object detection tasks difficult.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Information Engineering, University of Padova, 35122 Padova, Italy.
Sleep posture is a key factor in assessing sleep quality, especially for individuals with Obstructive Sleep Apnea (OSA), where the sleeping position directly affects breathing patterns: the side position alleviates symptoms, while the supine position exacerbates them. Accurate detection of sleep posture is essential in assessing and improving sleep quality. Automatic sleep posture detection systems, both wearable and non-wearable, have been developed to assess sleep quality.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Automation, Beijing Institute of Technology, Beijing 100081, China.
Existing autonomous driving systems face challenges in accurately capturing drivers' cognitive states, often resulting in decisions misaligned with drivers' intentions. To address this limitation, this study introduces a pioneering human-centric spatial cognition detecting system based on drivers' electroencephalogram (EEG) signals. Unlike conventional EEG-based systems that focus on intention recognition or hazard perception, the proposed system can further extract drivers' spatial cognition across two dimensions: relative distance and relative orientation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!