A simple setup is demonstrated for remote temperature monitoring of water, water-based media, and cells on a microscopic scale. The technique relies on recording changes in the shape of a stretching band of the hydroxyl group in liquid water at 3,100-3,700 cm(-1). Rather than direct measurements in the near-infrared (IR), a simple Raman spectrometer setup is realized. The measured Raman shifts are observed at near optical wavelengths using an inverted microscope with standard objectives in contrast to costly near-IR elements. This allows for simultaneous visible inspection through the same optical path. An inexpensive 671-nm diode pump laser (< 100 mW), standard dichroic and lowpass filters, and a commercial 600-1,000 nm spectrometer complete the instrument. Temperature changes of 1 degrees C are readily distinguished over a range consistent with cellular processes (25-45 degrees C) using integration times below 10 s. Greatly improved sensitivity was obtained by an automated two-peak fitting procedure. When combined with an optical camera, the instrument can be used to monitor changes in cell behavior as a function of temperature without the need for invasive probing. The instrument is very simple to realize, inexpensive compared with traditional Raman spectrometers and IR microscopes, and applicable to a wide range of problems in microthermometry of biological systems. In a first application of its kind, the instrument was used to successfully determine the temperature rise of a cluster of H1299 derived human lung cells adhered to polystyrene and immersed in phosphate-buffered saline (PBS) under exposure of RF millimeter wave radiation (60 GHz, 1.3, 2.6, and 5.2 mW/mm2).

Download full-text PDF

Source
http://dx.doi.org/10.1109/MEMB.2009.935468DOI Listing

Publication Analysis

Top Keywords

raman spectrometer
8
microscopic scale
8
temperature
5
thermal monitoring
4
raman
4
monitoring raman
4
spectrometer system
4
system remote
4
remote measurement
4
measurement cellular
4

Similar Publications

Since the outbreak of the novel coronavirus (SARS-CoV-2), the world has suffered significant losses. At present, the pneumonia disease caused by SARS-CoV-2 virus has not been eliminated, and SARS-CoV-2 has a high mutation rate, and its variant strains also have a high prevalence rate, which has always threatened the health of all mankind. This study aims to develop a rapid and sensitive method to complement existing SARS-CoV-2 diagnostic tools by utilizing surface-enhanced Raman spectroscopy (SERS) for the direct detection of the intrinsic SERS signal from the S proteins of SARS-CoV-2 and its variants (Omicron and Delta) within 5 min using a portable Raman spectrometer.

View Article and Find Full Text PDF

Forensic characterization of Brazilian gemstones: A pilot study employing raman spectroscopy and multivariate analysis.

Forensic Sci Int

January 2025

Departamento de Química. Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Universidade de São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, São Paulo CEP 14040-901, Brazil; Instituto Nacional de Ciência e Tecnologia Ciências Forenses (INCT-Forense), Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brasil; Programa de Cooperação Acadêmica - Segurança Pública e Ciências Forenses (PROCAD-SPCF), Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brasil. Electronic address:

Forensic gemstone analysis faces many challenges. One of the most critical aspects of gemological research is the classification of a gemstone. It is necessary to understand the mineral species, purity, origin, and identification of treatments to identify and classify a gem correctly, as well as assign a monetary value to it.

View Article and Find Full Text PDF

BiFusionPathoNet: fusion network for drug-resistant bacteria identification optical scattering patterns.

Anal Methods

January 2025

Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China.

The presented research introduces a new method to identify drug-resistant bacteria rapidly with high accuracy using artificial intelligence combined with Multi-angle Dynamic Light Scattering (MDLS) signals and Raman scattering signals. The main research focus is to distinguish methicillin-resistant (MRSA) and methicillin-sensitive (MSSA). First, a microfluidic platform was developed embedded with optical fibers to acquire the MDLS signals of bacteria and Raman scattering signals obtained by using a Raman spectrometer.

View Article and Find Full Text PDF

Tablet diversion strategy based on in-line NIR tablet press feed frame measurements.

Int J Pharm

February 2025

Pharmaceutical Engineering Research Group (PharmaEng), Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium. Electronic address:

The tablet diversion strategy, based on in-line near-infrared (NIR) tablet press feed frame measurements, can be a key component of both batch and continuous oral solid dose manufacturing processes. It enables real-time, high-frequency monitoring and control, enhancing process understanding and compliance compared to conventional interval-based sampling methods. Central to this strategy are NIR spectrometers, which serve as PAT systems for in-line blend uniformity monitoring in the feed of the tablet press.

View Article and Find Full Text PDF

Development of a portable SERS tool to evaluate the effectiveness of washing methods to remove pesticide residue from fruit surface.

Anal Chim Acta

January 2025

Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA; Materials Engineering and Science Program, State University of New York at Binghamton, Binghamton, NY, 13902, USA. Electronic address:

Background: Pesticides are widely used in agriculture to control pests and enhance crop yields. However, post-harvest, there are growing concerns about the potential health risks posed by pesticide residues on produce surfaces. Analyzing these residues is challenging due to their typically low concentrations and the potential interference from the complex matrix of the produce's surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!