Systematic construction of a conceptual minimal model of plasma cholesterol levels based on knockout mouse phenotypes.

Biochim Biophys Acta

The Netherlands Organization for Applied Scientific Research (TNO) Quality of Life, Utrechtseweg 48, PO Box 360, 3700 AJ Zeist, The Netherlands.

Published: June 2010

Elevated plasma cholesterol, a well-known risk factor for cardiovascular diseases, is the result of the activity of many genes and their encoded proteins in a complex physiological network. We aim to develop a minimal kinetic computational model for predicting plasma cholesterol levels. To define the scope of this model, it is essential to discriminate between important and less important processes influencing plasma cholesterol levels. To this end, we performed a systematic review of mouse knockout strains and used the resulting dataset, named KOMDIP, for the identification of key genes that determine plasma cholesterol levels. Based on the described phenotype of mouse knockout models, 36 of the 120 evaluated genes were marked as key genes that have a pronounced effect on the plasma cholesterol concentration. The key genes include well-known genes, e.g., Apoe and Ldlr, as well as genes hardly linked to cholesterol metabolism so far, e.g., Plagl2 and Slc37a4. Based on the catalytic function of the genes, a minimal conceptual model was defined. A comparison with nine conceptual models from literature revealed that each of the individual published models is less complete than our model. Concluding, we have developed a conceptual model that can be used to develop a physiologically based kinetic model to quantitatively predict plasma cholesterol levels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2010.02.009DOI Listing

Publication Analysis

Top Keywords

plasma cholesterol
28
cholesterol levels
20
key genes
12
cholesterol
8
levels based
8
genes
8
mouse knockout
8
conceptual model
8
model
7
plasma
7

Similar Publications

Bile acids (BAs) play important roles in the context of lipid homeostasis and inflammation. Based on extensive preclinical mouse studies, BA signaling pathways have been implicated as therapeutic targets for cardiovascular diseases. However, differences in BA metabolism between mice and humans hamper translation of preclinical outcomes.

View Article and Find Full Text PDF

Objectives: This study investigates the relationship between serum homocysteine, blood lipids, and perinatal outcomes in patients with diet-controlled gestational diabetes mellitus (GDM) and those with normal glucose tolerance (NGT).

Material And Methods: A prospective cohort of 150 diet-controlled GDM patients and 150 pregnant women with NGT, all delivering at our hospital, were selected based on predefined criteria. Data on demographics, physical parameters, and perinatal outcomes were compiled.

View Article and Find Full Text PDF

Current Perspectives of Diabetic Dyslipidemia and Treatment Modalities.

Curr Med Chem

January 2025

Cukurova University, Faculty of Medicine, Division of Endocrinology, Adana, Turkey.

Introduction: Diabetes mellitus is associated with an increased risk of atherosclerosis related to dyslipidemia. Although the terms hyperlipidemia and Diabetes Mellitus [DM] or diabetic dyslipidemia are interrelated to each other, these two conditions have some differences.

Aim: This study aimed to highlight possible mechanisms of hyperlipidemia and/or dyslipidemia in diabetic patients, which can be treated with available and newer hypolipidemic drugs.

View Article and Find Full Text PDF

Background: Piperine, a secondary metabolite, affects the antihyperlipidemic effect of Ezetimibe (EZ). Hyperlipidemia is one of the independent risk factors for cardiovascular disorders such as atherosclerosis. Antihyperlipidemic drugs are essential for reducing cardiovascular events and patient mortality.

View Article and Find Full Text PDF

Unlabelled: While previous research has established correlations between pre-pregnancy body mass index (BMI), late-pregnancy blood glucose, and late-pregnancy blood lipid levels during pregnancy and offspring's physical development, the underlying mechanism of their interaction remains elusive. A birth cohort study was conducted on pregnant women, who are biologically female, delivering at a tertiary hospital in Wuhan City between May 2023 and April 2024, encompassing 1620 participants. We collected maternal socio-demographic data through questionnaires and obtained information on fasting blood glucose (FPG), lipid levels during the third trimester, and neonatal physical development from medical records.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!