AI Article Synopsis

  • The B subunit of E. coli heat-labile enterotoxin (LTB) serves as an effective adjuvant for boosting immune responses to associated antigens.
  • Researchers created a synthetic gene for LTB optimized for plant expression, adding a retention signal to enhance production.
  • This gene was transformed into Peperomia pellucida, with successful integration confirmed, and the resulting LTB protein was shown to be biologically active, binding to specific receptors.

Article Abstract

The B subunit of Escherichia coli heat-labile enterotoxin (LTB), a non-toxic molecule with potent biological properties, is a powerful mucosal and parenteral adjuvant that induces a strong immune response against co-administered or coupled antigens. We synthesized a gene encoding the LTB adapted to the optimized coding sequences in plants and fused to the endoplasmic reticulum retention signal SEKDEL to enhance its expression level and protein assembly in plants. The synthetic LTB gene was located into a plant expression vector under the control of CaMV 35S promoter and was introduced into Peperomia pellucida by biolistic transformation method. The integration of synthetic LTB gene into genomic DNA of transgenic plants was confirmed by genomic DNA PCR amplification method. The assembly of plant-produced LTB was detected by western blot analysis. The amount of LTB protein produced in transgenic P. pellucida leaves was approximately 0.75% of the total soluble plant protein. Enzyme-linked immunosorbent assay indicated that plant-synthesized LTB protein bound specifically to GM1-ganglioside, which is receptor for LTB on the cell surface, suggesting that the LTB subunits formed biological active pentamers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pep.2010.02.010DOI Listing

Publication Analysis

Top Keywords

ltb
9
escherichia coli
8
coli heat-labile
8
heat-labile enterotoxin
8
peperomia pellucida
8
synthetic ltb
8
ltb gene
8
genomic dna
8
ltb protein
8
tissue culture
4

Similar Publications

Spectroscopic properties of Tb-doped and Tb-Ag codoped lithium tetraborate (LTB) glasses with LiBO (or LiO-2BO) composition are investigated and analysed using electron paramagnetic resonance (EPR), optical absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectra, PL decay kinetics and absolute quantum yield (QY) measurements. PL spectra of the investigated glasses show numerous narrow emission bands corresponding to the D → F (J = 6-0) and D → F (J = 5-3) transitions of Tb (4f) ions. The most intense PL band of Tb ions at 541 nm (D → F transition) is characterised by a lifetime slightly exceeding 2.

View Article and Find Full Text PDF

So far, it has been proven that benign prostatic hyperplasia (BPH) is strongly associated with inflammation resulting from, i.a. the presence of infectious agent, autoimmune disease, aging process and lipid disorders associated with metabolic syndrome (MetS).

View Article and Find Full Text PDF

Purpose: The tumor microenvironment (TME) in lymphoma is influenced by M2 macrophages. This research proposes an novel predictive model that leverages M2 macrophage-associated genes to categorize risk, forecast outcomes, and evaluate the immune profile in patients with newly diagnosed diffuse large B-cell lymphoma (DLBCL) undergoing R-CHOP therapy.

Methods: Gene expression data and clinical information from DLBCL patients were retrieved from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases.

View Article and Find Full Text PDF

High-quality aromatic rice (HAR) is most sensitive to low-temperature stress at the booting stage (LTB), and LTB leads to quality reduction. The key enzymes involved in nitrogen and carbon metabolism significantly affect the synthesis of proteins and starch, thereby influencing the nutritional and taste quality of rice. However, to date, no studies have focused on the after-effects of low-temperature at booting on the quality formation of HAR.

View Article and Find Full Text PDF

Mycobacterium tuberculosis (Mtb) remains a leading infectious disease responsible for millions of deaths. RNA sequencing is a rapidly growing technique and a powerful approach to understanding host and pathogen cross-talks via transcriptional responses. However, its application is limited due to the high costs involved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!