Immortal bovine mammary epithelial cell lines are useful for providing an efficient indicator for transgene expression and for the technological improvement of genetic modification. The preparation of hTERT (human telomerase reverse transcriptase)-mediated immortalized MECs (mammary epithelial cells) requires a down-regulation of p16(INK4a). Here, we report the establishment of two immortal bovine MEC lines by expression of hTERT gene alone under serum-containing culture conditions. This two cell lines maintain the general characteristics of MECs and have been stably passed more than 200 generations accompanying telomere extension, and were identified as non-malignant transformation. Investigation on transcriptional profile showed a similar down-regulation in both p16(INK4a) and p53. By comparing with non-immortal hTERT-positive MECs, we speculated that there are some spontaneous p16(INK4a)-reduced cells under normal culture conditions and the immortalization required for a co-ordinate repression of p53 and p16(INK4a) signalling pathways. Interestingly, two immortal cell lines showed a significant distinction in proliferation rate, implying that other mechanisms might be involved in proliferation control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/CBI20100006 | DOI Listing |
Ann Surg Oncol
January 2025
Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA.
Sci Rep
January 2025
College of Animal Science and Technology, Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia University, Yinchuan, 750021, China.
Currently, the identification of valuable candidate genes affecting milk fat synthesis in dairy cows is still limited, and the specific regulatory mechanism is still unknown. In this study, we used primary bovine mammary epithelial cells(BMECs)as a model and utilized overexpression and knockdown techniques for the PI4K2A gene to investigate the specific mechanisms by which it regulates lipid metabolism in BMECs. We studied whether PI4K2A regulates the inhibition of trans-10, cis-12 conjugated linoleic acid (t10,c12-CLA) on lipid synthesis in BMECs.
View Article and Find Full Text PDFBiomol Biomed
January 2025
Necmettin Erbakan University, Meram Faculty of Medicine, Department of Medical Oncology, Konya, Turkey.
The cysteine-rich epidermal growth factor ligand domain 2 protein (CRELD2) is associated with pathways that regulate epithelial-to-mesenchymal transition, a critical process driving cancer metastasis. This study aimed to determine the prognostic value of CRELD2 status on survival outcomes in triple-negative breast cancer (TNBC). Seventy patients were included in the study.
View Article and Find Full Text PDFFront Nutr
January 2025
College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
Improving mammary gland epithelial cells proliferation through nutrition is an important approach for enhancing sow milk production and piglet growth. An intermediate metabolite of valine, 3-hydroxyisobutyrate (3-HIB), regulates cellular lipid metabolism. In the present study, we investigated the effects of 3-HIB on porcine mammary gland epithelial cells proliferation and lipid metabolism.
View Article and Find Full Text PDFMicrob Pathog
January 2025
College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Animal Disease Prevention and Control Center of Ningxia Hui Autonomous Region, Yinchuan 750001, Ningxia, P. R. China. Electronic address:
Mastitis, generally caused by pathogenic microorganisms, is a serious disease in dairy farming. Staphylococcus aureus (S. aureus) is one of the main pathogens that induces mastitis in dairy cows.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!