Probe design is a critical parameter in successful DNA and RNA target detection. In this proof-of-concept study, we evaluated the single-base mismatch recognition power of surface immobilized and self-assembled stem-loop hairpin DNA oligonucleotide probes modified to contain locked nucleic acid residues (LNA-HP). The stiffness change in conjunction with the stem opening of the interfacial molecules before and after hybridization led to clear variations of the overall film thickness or miniaturized nanospot height, which could be directly measured using an atomic force microscopy (AFM) nanolithography technique. Particularly, LNA-HP achieved highly differentiable readouts between perfectly complementary and singly mismatched targets (discrimination ratio as high as 2 to 3), outperforming the selectivity of its linear and hairpin counterparts with no LNA modification.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac902665cDOI Listing

Publication Analysis

Top Keywords

single-base mismatch
8
locked nucleic
8
hairpin dna
8
atomic force
8
force microscopy
8
enhanced recognition
4
recognition single-base
4
mismatch locked
4
nucleic acid-integrated
4
acid-integrated hairpin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!