Dinucleoside polyphosphates exert their physiological effects via P2 receptors (P2Rs). They are attractive drug candidates, as they offer better stability and specificity compared to nucleotides, the most common P2 receptor ligands. The activation of pancreatic P2Y receptors by nucleotides increases insulin secretion. Therefore, in the current study, dinucleoside polyphosphate analogues (di-(2-MeS)-adenosine-5',5''-P(1),P(4),alpha,beta-methylene-tetraphosphate), 8, (di-(2-MeS)-adenosine-5',5''-P(1),P(4),beta,gamma-methylene-tetraphosphate), 9, and di-(2-MeS)-adenosine-5',5''-P(1),P(3),alpha,beta-methylene triphosphate, 10, were developed as potential insulin secretagogues. Analogues 8 and 9 were found to be agonists of the P2Y(1)R with EC(50) values of 0.42 and 0.46 microM, respectively, whereas analogue 10 had no activity. Analogues 8-10 were found to be completely resistant to hydrolysis by alkaline phosphatase over 3 h at 37 degrees C. Analogue 8 also was found to be 2.5-fold more stable in human blood serum than ATP, with a half-life of 12.1 h. Analogue 8 administration in rats caused a decrease in a blood glucose load from 155 mg/dL to ca. 100 mg/dL and increased blood insulin levels 4-fold as compared to basal levels. In addition, analogue 8 reduced a blood glucose load to normal values (80-110 mg/dL), unlike the commonly prescribed glibenclamide, which reduced glucose levels below normal values (60 mg/dL). These findings suggest that analogue 8 may prove to be an effective and safe treatment for type 2 diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363086 | PMC |
http://dx.doi.org/10.1021/jm901621h | DOI Listing |
Anal Biochem
February 2025
School of Chemistry and Materials Science, Rochester Institute of Technology, United States. Electronic address:
When stressed, cells synthesize di-adenosine polyphosphates (ApA), and cellular organisms also express proteins that degrade these compounds to release ATP. Most of these proteins are members of the nudix hydrolase superfamily, and several are involved in bacterial pathogenesis, neurodevelopment, and cancer. The goal of this project is to assist in the discovery of inhibitors of these enzymes that could be used to study ApA function and the cellular role of these nudix enzymes.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Department of Rheumatology, Cooper University Hospital, Camden, NJ 08103, USA.
Chembiochem
September 2024
Chemical Biology of Nucleic Acids, Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 2, Prague 6, Czech Republic.
It was long believed that viral and eukaryotic mRNA molecules are capped at their 5' end solely by the N-methylguanosine cap, which regulates various aspects of the RNA life cycle, from its biogenesis to its decay. However, the recent discovery of a variety of non-canonical RNA caps derived from metabolites and cofactors - such as NAD, FAD, CoA, UDP-glucose, UDP-N-acetylglucosamine, and dinucleoside polyphosphates - has expanded the known repertoire of RNA modifications. These non-canonical caps are found across all domains of life and can impact multiple aspects of RNA metabolism, including stability, translation initiation, and cellular stress responses.
View Article and Find Full Text PDFRNA Biol
January 2024
Institute of Organic Chemistry and Biochemistry of the CAS, Prague 6, Czechia.
RNA capping is a prominent RNA modification that influences RNA stability, metabolism, and function. While it was long limited to the study of the most abundant eukaryotic canonical mG cap, the field recently went through a large paradigm shift with the discovery of non-canonical RNA capping in bacteria and ultimately all domains of life. The repertoire of non-canonical caps has expanded to encompass metabolite caps, including NAD, FAD, CoA, UDP-Glucose, and ADP-ribose, alongside alarmone dinucleoside polyphosphate caps, and methylated phosphate cap-like structures.
View Article and Find Full Text PDFBioorg Chem
July 2024
Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2 85-089 Bydgoszcz, Poland. Electronic address:
Adenylate kinase (AK) plays a crucial role in the metabolic monitoring of cellular adenine nucleotide homeostasis by catalyzing the reversible transfer of a phosphate group between ATP and AMP, yielding two ADP molecules. By regulating the nucleotide levels and energy metabolism, the enzyme is considered a disease modifier and potential therapeutic target for various human diseases, including malignancies and inflammatory and neurodegenerative disorders. However, lacking approved drugs targeting AK hinders broad studies on this enzyme's pathological importance and therapeutic potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!