This study was undertaken to compare the labeling efficiencies of three iron-oxide based MRI contrast agents [Feridex, Resovist and monocrystalline iron oxide (MION)] and to evaluate their effects on the biological properties of human mesenchymal stem cells (hMSCs). The hMSCs were cultivated for 1 and 7 days after 24-h labeling with iron oxide nanoparticles (12.5 microg Fe/mL) in the presence of poly-L-lysine (0.75 microg/mL). The hMSCs were labeled more efficiently with use of Feridex, Resovist as compared to MION. No significant differences were observed in terms of viability and proliferation of labeled hMSCs. The level of Oct-4 mRNA increased in labeled hMSCs at day 1 and the cellular phenotype changed from CD45-/CD44+/CD29+ to CD45low/CD44+/CD29+ at day 7, which closely resembles the phenotype of fresh bone marrow-derived hMSCs. Our study has demonstrated that the Feridex or Resovist is the preferred labeling agent for hMSCs. There was a change in Oct-4 and CD45 expression after labeling.

Download full-text PDF

Source
http://dx.doi.org/10.1002/nbm.1487DOI Listing

Publication Analysis

Top Keywords

mri contrast
8
contrast agents
8
biological properties
8
properties human
8
human mesenchymal
8
mesenchymal stem
8
stem cells
8
iron oxide
8
feridex resovist
8
labeled hmscs
8

Similar Publications

Background: The role of imaging in autoimmune encephalitis (AIE) remains unclear, and there are limited data on the utility of magnetic resonance imaging (MRI) to diagnose, treat, or prognosticate AIE.

Purpose: To evaluate whether MRI is a diagnostic and prognostic marker for AIE and assess its efficacy in distinguishing between various AIE subtypes.

Material And Methods: We analyzed data from 96 AIE patients from our prospective autoimmune registry.

View Article and Find Full Text PDF

Tailoring rhodium-based metal-organic layers for parahydrogen-induced polarization: achieving 20% polarization of H in liquid phase.

Natl Sci Rev

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, School of Electronic Science and Engineering, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Heterogeneous catalysts for parahydrogen-induced polarization (HET-PHIP) would be useful for producing highly sensitive contrasting agents for magnetic resonance imaging (MRI) in the liquid phase, as they can be removed by simple filtration. Although homogeneous hydrogenation catalysts are highly efficient for PHIP, their sensitivity decreases when anchored on porous supports due to slow substrate diffusion to the active sites and rapid depolarization within the channels. To address this challenge, we explored 2D metal-organic layers (MOLs) as supports for active Rh complexes with diverse phosphine ligands and tunable hydrogenation activities, taking advantage of the accessible active sites and chemical adaptability of the MOLs.

View Article and Find Full Text PDF

Purpose: The long scan times of quantitative MRI techniques make motion artifacts more likely. For MR-Fingerprinting-like approaches, this problem can be addressed with self-navigated retrospective motion correction based on reconstructions in a singular value decomposition (SVD) subspace. However, the SVD promotes high signal intensity in all tissues, which limits the contrast between tissue types and ultimately reduces the accuracy of registration.

View Article and Find Full Text PDF

Purpose: Reliable image quality assessment is crucial for evaluating new motion correction methods for magnetic resonance imaging. In this work, we compare the performance of commonly used reference-based and reference-free image quality metrics on a unique dataset with real motion artifacts. We further analyze the image quality metrics' robustness to typical pre-processing techniques.

View Article and Find Full Text PDF

Unlabelled: Evaluating tissue microstructure and membrane integrity in the living human brain through diffusion-water exchange imaging is challenging due to requirements for a high signal-to-noise ratio and short diffusion times dictated by relatively fast exchange processes. The goal of this work was to demonstrate the feasibility of imaging of tissue micro-geometries and water exchange within the brain gray matter using the state-of-the-art Connectome 2.0 scanner equipped with an ultra-high-performance gradient system (maximum gradient strength=500 mT/m, maximum slew rate=600 T/m/s).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!