Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An ethanolic extract of Artemisia dracunculus L. (PMI 5011) has been observed to decrease glucose and insulin levels in animal models and enhance cellular signaling in cultured cells. To determine the mechanism of action of PMI-5011, we have measured changes in protein expression in human primary skeletal muscle culture (HSMC) from subjects with Type 2 diabetes. After obtaining skeletal muscle biopsies, HSMCs were initiated, grown to confluence, and exposed to 10 microg/mL PMI 5011 overnight. Two-dimensional difference in-gel electrophoresis was used to separate proteins, and liquid chromatography mass spectrometry was used to identify differentially regulated proteins. Additionally, real-time polymerase chain reaction (PCR) was used to confirm candidate proteins identified. These data demonstrate that a well characterized botanical extract of Artemisia dracunculus L. significantly modulates proteins involved in regulating inflammatory pathways, particularly the NFkappaB complex system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ptr.3093 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!