Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To investigate whether sodium selenate treatment would impact on the onset of diabetic nephropathy, we examined blood glucose, serum biochemical components, and interrelationship between oxidative stress, TGF-β1, and apoptosis in streptozotocin (STZ) induced diabetic rats. Sixty male Wistar rats were divided into six groups. Group I (n = 10), normal control; Group II (n = 10), diabetic control; Group III (n = 10), sodium selenate (16 μmoles/kg) + diabetic; Group IV (n = 10), sodium selenate (32 μmoles/kg) + diabetic; Group V (n = 10), sodium selenate (16 μmoles/kg) control; and Group VI (n = 10), sodium selenate (32 μmoles/kg) control. Sodium selenate was administered via orogastric route for 10 weeks. In the diabetic group, diabetes was induced by single intraperitoneal injection of STZ (50 mg/kg). The levels of blood glucose were estimated and total cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides, creatinine, urea, and albumin were detected in serum. Antioxidant status was examined by measuring the superoxide dismutase (SOD), catalase, glutathione, and lipid peroxidation in kidney tissues. Histopathological studies were performed in the kidney tissue sections. The expression of TGF-β1 was estimated by the immunohistochemical analysis in kidneys. Apoptotic study in kidney was performed using the TdT-mediated dUTP nick end labeling technique. It was observed that blood glucose, serum, total cholesterol, HDL cholesterol, triglycerides, creatinine, urea, and albumin were significantly higher in diabetic control groups. Diabetic + sodium selenate (16 and 32 μmoles/kg) significantly reduced blood glucose, serum, total cholesterol, HDL cholesterol, triglycerides, creatinine, urea, and albumin levels. Selenium-treated groups significantly increased antioxidant enzyme activities (SOD, catalase, and glutathione) in kidneys of diabetic rats. All enzyme activities of selenium control groups did not differ compared with the normal control. Sodium selenate reduces significantly lipid peroxidation in diabetic rats. Cellular architecture of the diabetic rats was altered whereas sodium selenate administration rectifies the degenerative changes of the kidney. Profound immunopositivity of TGF-β1 was observed in the glomerular and tubulointerstitial cells of diabetic rat kidney. Immunopositivity of TGF-β1 was significantly reduced in both low and high dose of sodium-selenate-treated rats (P < 0.05, P < 0.01). High numbers of apoptotic cells were observed in diabetic rats whereas sodium selenate in both doses significantly reduces the incidence of apoptosis (P < 0.05, P < 0.01). We conclude herein that sodium selenate has the potential to play a significant role in limiting the renal impairment by altering the apoptosis and TGF-β1 in experimental diabetic rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12011-010-8635-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!