Background: Electrophilic xenobiotics and endogenous products from oxidative stresses induce the glutathione S-transferases (GSTs), which form a large family within the phase II enzymes over both animal and plant kingdoms. The GSTs thus induced in turn detoxify these external as well as internal stresses. Because these stresses are often linked to ageing and damage to health, the induction of phase II enzymes without causing adverse effects would be beneficial in slowing down ageing and keeping healthy conditions.

Methodology/principal Findings: We have tested this hypothesis by choosing allyl isothiocyanate (AITC), a functional ingredient in wasabi, as a candidate food ingredient that induces GSTs without causing adverse effects on animals' lives. To monitor the GST induction, we constructed a gst::gfp fusion gene and used it to transform Caenorhabditis elegans for use as a nematode biosensor. With the nematode biosensor, we found that AITC induced GST expression and conferred tolerance on the nematode against various oxidative stresses. We also present evidence that the transcription factor SKN-1 is involved in regulating the GST expression induced by AITC.

Conclusions/significance: We show the applicability of the nematode biosensor for discovering and evaluating functional food substances and chemicals that would provide anti-ageing or healthful benefits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2822842PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0009267PLOS

Publication Analysis

Top Keywords

nematode biosensor
16
allyl isothiocyanate
8
oxidative stresses
8
phase enzymes
8
causing adverse
8
adverse effects
8
gst expression
8
nematode
5
isothiocyanate induces
4
gst
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!