This work demonstrates photo alignment and electrical tuning effects in photonic liquid crystal fiber (PLCF). Applying voltages of 0 approximately 130V and 250 approximately 400V shifts the short and long wavelength edges of the transmission bands by about 45 nm and 74 nm toward longer wavelengths, respectively. An electro-tunable notch filter is formed in the PLCF without the use of gratings. The range of tunability of the notch filter is around 180 nm with an applied voltage of 140 approximately 240 V. This photo-induced alignment yields a permanently tilted LC structure in PCF, which reduces the threshold voltage, and can be further modulated by electric fields. The polarization dependent loss and fast response time of photo-aligned PLCF is also demonstrated. The finite-difference frequency-domain method is adopted to analyze the shift of the transmission bandgap, and the simulation results are found to correlate well with experimental data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.18.002814 | DOI Listing |
J Phys Chem B
January 2025
Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
The light-harvesting pigment-protein complex II (LHCII) from plants can be used as a component for biohybrid photovoltaic devices, acting as a photosensitizer to increase the photocurrent generated when devices are illuminated with sunlight. LHCII is effective at photon absorption in the red and blue regions of the visible spectrum, however, it has low absorption in the green region (550-650 nm). Previous studies have shown that synthetic chromophores can be used to fill this spectral gap and transfer additional energy to LHCII, but it was uncertain whether this would translate into an improved performance for photovoltaics.
View Article and Find Full Text PDFLaser Photon Rev
October 2024
Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Irreproducibility in molecular optical sectioning microscopy has hindered the transformation of acquired digital images from qualitative descriptions to quantitative data. Although numerous tools, metrics, and phantoms have been developed, accurate quantitative comparisons of data from different microscopy systems with diverse acquisition conditions remains a challenge. Here, we develop a simple tool based on an absolute measurement of bulk fluorophore solutions with related Poisson photon statistics, to overcome this obstacle.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, 92697, USA.
Background: Immunothrombosis is the process by which the coagulation cascade interacts with the innate immune system to control infection. However, the formation of clots within the brain vasculature can be detrimental to the host. Recent work has demonstrated that Toxoplasma gondii infects and lyses central nervous system (CNS) endothelial cells that form the blood-brain barrier (BBB).
View Article and Find Full Text PDFNat Commun
January 2025
Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany.
Advancements in high-throughput screenings enable the exploration of rich phenotypic readouts through high-content microscopy, expediting the development of phenotype-based drug discovery. However, analyzing large and complex high-content imaging screenings remains challenging due to incomplete sampling of perturbations and the presence of technical variations between experiments. To tackle these shortcomings, we present IMage Perturbation Autoencoder (IMPA), a generative style-transfer model predicting morphological changes of perturbations across genetic and chemical interventions.
View Article and Find Full Text PDFArch Osteoporos
January 2025
Department of Endocrinology and Diabetes, Xiamen Clinical Medical Center for Endocrine and Metabolic Diseases, Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, No. 55 Zhenhai Road, Xiamen, 361003, China.
Unlabelled: Our study investigated trends in osteoporosis management in Xiamen from 2012 to 2021, revealing improvements in screening and treatment, although medication use remained low. Additionally, we identified factors that may influence medication use and emphasized the importance of effective osteoporosis management strategies.
Purpose: The goal of the current study is to explore trends in assessment, diagnosis after fragility fractures, and osteoporosis treatment among hospitalized patients in Xiamen, China, between 2012 and 2021.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!