Widely tunable erbium-doped fiber laser based on multimode interference effect.

Opt Express

Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, México.

Published: January 2010

A widely tunable erbium-doped all-fiber laser has been demonstrated. The tunable mechanism is based on a novel tunable filter using multimode interference effects (MMI). The tunable MMI filter was applied to fabricate a tunable erbium-doped fiber laser via a standard ring cavity. A tuning range of 60 nm was obtained, ranging from 1549 nm to 1609 nm, with a signal to noise ratio of 40 dB. The tunable MMI filter mechanism is very simple and inexpensive, but also quite efficient as a wavelength tunable filter.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.18.000591DOI Listing

Publication Analysis

Top Keywords

tunable erbium-doped
12
tunable
8
erbium-doped fiber
8
fiber laser
8
multimode interference
8
tunable filter
8
tunable mmi
8
mmi filter
8
laser based
4
based multimode
4

Similar Publications

We demonstrate a wide-tunable random fiber laser (RFL) with narrow linewidth and low noise. The tunable RFL is achieved by combining random feedback from a disordered fiber Bragg grating array (FBGA) with a broad scattering wavelength range and the gain from an erbium-doped fiber (EDF) with a broad amplification wavelength range. The disordered FBGA is fabricated using a femtosecond laser direct writing technique by varying the random distances and grating periods.

View Article and Find Full Text PDF

Transition metal based optical limiting materials have garnered significant attention due their crucial role in protecting sensitive optical system from high intense laser damage. Transition metal molybdates exhibits nonlinear optical (NLO) response, which attenuate highly intense light by transmitting light of desired intensity. Herein we report Silver molybdate (AgMoO) nanostructures doped with erbium (Er) ions were successfully synthesized by simple co-precipitation technique.

View Article and Find Full Text PDF

Difference frequency generation (DFG) based tunable single-frequency mid-infrared (MIR) light sources are desirable for high-resolution spectroscopy, sensing, and imaging. In this work, we demonstrate a continuous-wave (CW) single-frequency DFG in a ZnGeP (ZGP) crystal driven by all-fiber near-infrared (NIR) fiber lasers, for the first time to our knowledge. The all-fiber NIR laser sources consist of a 1.

View Article and Find Full Text PDF

We present a tunable and switchable single-frequency (SF) erbium-doped fiber laser (EDFL) operating at 1.6 µm. For the first time, a multichannel Sagnac filter, a "θ" sub cavity, and a saturable absorber (SA) have been combined to achieve SF operation of single- and dual-wavelength tunability as well as single-dual-triple-wavelength switching.

View Article and Find Full Text PDF

Plasmonic resonant metasurfaces have found many applications in nonlinear optics, such as harmonic generation, all-optical modulation, saturable absorption, etc. A saturable absorber, as a key device for pulsing emission, plays an important role in building passively Q-switched or mode-locked fiber lasers. Recently, excitable fiber lasers have attracted much attention in the area of neuromorphic photonics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!