Hormone-mediated promotion of trichome initiation in plants is conserved but utilizes species- and trichome-specific regulatory mechanisms.

Plant Signal Behav

Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB) and Department of Plant Biotechnology and Genetics, Ghent University, Gent, Belgium.

Published: February 2010

Plant trichome initiation is steered by diverse developmental and environmental cues, through molecular mechanisms that remain elusive in most plant species. Using a robust experimental method to investigate the molecular mechanisms by which phytohormones modulate leaf trichome formation, we verified the effect of jasmonates, cytokinins and gibberellins in Arabidopsis (). All three phytohormones promoted Arabidopsis trichome initiation, but caused divergent effects on trichome maturation and other leaf parameters. Molecular analysis indicated that the phytohormones mediated trichome initiation by the transcriptional regulation of the components of the TRANSPARENT TESTA GLABRA1 (TTG1) activator/inhibitor complex. In this addendum, we additionally studied the effects of jasmonates, cytokinins and gibberellins on leaf trichome formation in a representative set of plant species, spanning the angiosperm lineage and covering different trichome types. We found that the general ability of the three phytohormones to impinge on trichome initiation is conserved across angiosperms, but that within a particular plant species distinct regulatory networks might be activated to steer the formation of the various trichome types.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2884137PMC
http://dx.doi.org/10.4161/psb.5.2.11214DOI Listing

Publication Analysis

Top Keywords

trichome initiation
20
plant species
12
trichome
10
molecular mechanisms
8
leaf trichome
8
trichome formation
8
jasmonates cytokinins
8
cytokinins gibberellins
8
three phytohormones
8
trichome types
8

Similar Publications

Effect of Drying and Microwave-Assisted Extraction Parameters on Variety Koseret Essential Oil Yield.

Food Technol Biotechnol

December 2024

Hanbit Flavor and Fragrance Co. Ltd., 88 Sinwon-ro, Youngtong-gu, 101-1511 Gyeonggi-do, South Korea.

Research Background: Green extraction technologies, such as microwave-assisted extraction, have been used to replace conventional methods of isolating essential oils from plants. In this study, the essential oil was extracted from the variety koseret using the advanced method of microwave-assisted hydrodistillation. The main objective was to investigate the effect of irradiation time, microwave power and particle size on the yield and chemical composition of the essential oil extracted from leaves dried in an oven at 50 °C and room temperature.

View Article and Find Full Text PDF

To identify novel genes engaged in plant epidermal development, we characterized the phenotypic variability of rosette leaf epidermis of 310 sequenced Arabidopsis thaliana accessions, focusing on trichome shape and distribution, compositional characteristics of the trichome cell wall, and histologically detectable metal ion distribution. Some of these traits correlated with cLimate parameters of our accession's locations of origin, suggesting environmental selection. A novel metal deposition pattern in stomatal guard cells was observed in some accessions.

View Article and Find Full Text PDF

Regulatory mechanisms of trichome and root hair development in Arabidopsis.

Plant Mol Biol

December 2024

Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.

In plants, cell fate determination is regulated temporally and spatially via a complex of signals consisting of a large number of genetic interactions. Trichome and root hair formation are excellent models for studying cell fate determination in plants. Nowadays, the mysteries underlying the reprograming of trichome and root hair and how nature programs the development of trichome and root hair is an interesting topic in the scientific field.

View Article and Find Full Text PDF

The TBL (Trichome Birefringence-Like) gene family, which participates in the initiation of trichomes and the acetylation of xylan in a variety of plant species, plays a significant role in plant biology. However, there is little information regarding TBL family members in pear (Pyrus bretschneideri Rehd). Here, 65 PbrTBL genes were identified in Pyrus bretschneideri genome.

View Article and Find Full Text PDF

Transcription Factors (TFs) are key regulators of how plants grow and develop. Among the diverse TF families, the Glabrous-enhancer binding protein (GeBP) family plays a key role in trichome initiation and leaf development. The specific roles of GeBP TFs in plants remain largely unexplored, although GeBP transcription factors play important roles in plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!