This paper presents a new method for improved flow analysis and quantification using MRI. The method incorporates fluid dynamics to regularize the flow quantification from tagged MR images. Specifically, the flow quantification is formulated as a minimization problem based on the following: 1) the Navier-Stokes equation governing the fluid dynamics; 2) the flow continuity equation and boundary conditions; and 3) the data consistency constraint. The minimization is carried out using a genetic algorithm. This method is tested using both computer simulations and MR flow experiments. The results are evaluated using flow vector fields from the computational fluid dynamics software package as a reference, which show that the new method can achieve more realistic and accurate flow quantifications than the conventional method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2009.2038229 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!