A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Estimation of three- and four-element windkessel parameters using subspace model identification. | LitMetric

A windkessel model is widely used to operationalize vascular characteristics. In this paper, we employ a noniterative subspace model identification (SMI) algorithm to estimate parameters in a three- and four-element windkessel model by application of physical foreknowledge. Simulation data of the systemic circulation were used to investigate systematic and random errors in the parameter estimations. Results were compared with different methods as proposed in the literature: one closed-loop and two iterative methods for the three-element model, and one iterative method for the four-element model. For the three-element model, no significant systematic errors were observed using SMI. Concerning random errors, SMI appeared more robust in parameter estimations compared with the other methods (P < 0.05 for a signal-to-noise ratio of 18 dB). For the four-element model, a significant systematic error in the estimate of the arterial inertance L was observed (P = 0.011). However, for all methods, an increasing number of outliers in parameter estimates were observed at increased noise levels. These outliers were almost exclusive due to errors in estimates of L. In conclusion, with SMI physical parameters can mathematically be derived by application of physiological foreknowledge. For a three-element windkessel model, SMI appeared a very robust method to estimate parameters. However, application to a four-element windkessel model was less accurate because of low identifiability of L. Therefore, based on the simulation results, the use of the four-element windkessel model is questionable.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2010.2041351DOI Listing

Publication Analysis

Top Keywords

windkessel model
20
four-element windkessel
16
model
11
three- four-element
8
subspace model
8
model identification
8
estimate parameters
8
random errors
8
parameter estimations
8
estimations compared
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!