A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Linking desorption kinetics to phenanthrene biodegradation in soil. | LitMetric

Linking desorption kinetics to phenanthrene biodegradation in soil.

Environ Pollut

Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom.

Published: May 2010

The desorption of polycyclic aromatic hydrocarbons (PAHs) often exhibits a biphasic profile similar to that observed for biodegradation whereby an initial rapid phase of degradation or desorption is followed by a phase of much slower transformation or release. Most investigations to-date have utilised a polymeric sorbent, such as Tenax, to characterise desorption, which is methodologically unsuitable for the analysis of soil. In this study, desorption kinetics of (14)C-phenanthrene were measured by consecutive extraction using aqueous solutions of hydroxypropyl-beta-cyclodextrin (HPCD). The data indicate that the fraction extracted after 24 h generally approximated the linearly sorbed, rapidly desorbing fraction (F(rap)), calculated using a three-compartment model. A good linear correlation between phenanthrene mineralised and F(rap) was observed (r(2) = 0.89; gradient = 0.85; intercept = 8.20). Hence HPCD extraction (24 h) and first-order three-compartment modelling appear to provide an operationally straightforward tool for estimating mass-transfer limited biodegradation in soil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2010.01.008DOI Listing

Publication Analysis

Top Keywords

desorption kinetics
8
biodegradation soil
8
linking desorption
4
kinetics phenanthrene
4
phenanthrene biodegradation
4
desorption
4
soil desorption
4
desorption polycyclic
4
polycyclic aromatic
4
aromatic hydrocarbons
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!