Progesterone pharmacokinetics were analyzed for plasma hormone concentrations ranging from linear to saturated metabolism in lactating Holstein cows with differing daily milk yields. The adequacy of 2-coupled first-order (bi-exponential equation), hyperbolic (Michaelis-Menten equation), and sigmoidal (Hill equation) kinetic models to describe the experimental progesterone pharmacokinetic profiles was examined on a statistical basis. After nonlinear regression and statistical analysis of the data-fitting capability, a simple one-compartment model based on Hill equation proved to be most adequate. This model indicates an enzyme-catalyzed metabolism of progesterone involving cooperative substrate-binding sites, resulting from allosteric effects that yield a sigmoidal saturation rate curve. Kinetic parameters were estimated for 2 groups of lactating Holstein cows with different daily milk yields. We found, for the first time, a remarkable quantitative agreement of the Hill coefficient value with that reported in pharmacokinetic studies involving cytochrome P450, family 3, subfamily A (CYP3A)-mediated reactions in other mammals, humans included. It seems that positive cooperativity makes enzymes much more sensitive to plasma progesterone concentration, and their activities can undergo significant changes in a narrow range of concentration as characteristic of sigmoidal behavior. Therefore, the values of classical pharmacokinetic parameters, such as the elimination constant, half-life, and clearance rate, were found to be highly dependent on the plasma progesterone concentration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2009-2519 | DOI Listing |
J Dairy Sci
January 2025
Confederación de Asociaciones de Frisona Española (CONAFE), Ctra. de Andalucía km 23600 Valdemoro, 28340 Madrid, Spain.
Epizootic hemorrhagic disease (EHD) is a non-contagious viral infection that can cause important economic losses in dairy farms. This study aimed to identify epidemiological and genetic factors influencing the susceptibility and severity of EHD in Holstein dairy cattle during the 2023 outbreak in Spain. Data from 2852 animals in 7 affected farms from 5 Spanish provinces were used.
View Article and Find Full Text PDFJ Dairy Sci
January 2025
Department of Animal Science, Michigan State University, East Lansing, MI 48824. Electronic address:
The aim of our study was to assess the effects of low or high-starch diets with or without palmitic acid (C16:0) supplementation on the yield of milk, milk components, and energy partitioning of primiparous and multiparous dairy cows between mid and late-lactation. Thirty-two Holstein cows, 12 primiparous ([mean ± SD] 163 ± 33 d in milk) and 20 multiparous ([mean ± SD] 179 ± 37 d in milk), were used in a split-plot Latin square design. Parity was considered the main plot, and within each plot, treatments were then randomly assigned in a replicated 4 × 4 Latin square with 21 d periods and balanced for carryover effects.
View Article and Find Full Text PDFJ Dairy Sci
January 2025
Agriculture and Agri-Food Canada, Quebec Research and Development Centre, Quebec, QC G1V 2J3 Canada.
This study examined the effects of supplementing dairy cows with a mixture of essential oils on enteric CH emissions, apparent total-tract nutrient digestibility, N utilization, and lactational performance (production, components and efficiency). Thirty-two multiparous lactating Holstein cows were used in a randomized complete block design. Cows averaged (mean ± SD) 95 ± 15.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic.
The study aimed to explore if milkability parameters could reliably predict the dimensions of teat structures and their milking-induced changes. Ultrasonography repeatedly measured the teat structures of 48 Holstein cows from mid to late lactation. We found that milking-induced changes in each structure are affected by different milkability parameters.
View Article and Find Full Text PDFFront Vet Sci
December 2024
College of Animal Science and Technology, Ningxia University, Yinchuan, China.
Introduction: Postpartum dairy cows are susceptible to negative energy balance caused by decreased feed intake and the initiation of lactation. Sijunzi San, a famous Chinese traditional herbal formulation, can promote gastrointestinal digestion and absorption and improve disorders of intestinal microbiota. Therefore, we hypothesized that Sijunzi San might alleviate negative energy balance in postpartum dairy cows by modulating the structure of the rumen microbiota and enhancing its fermentation capacity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!