Inhalation animal studies usually employ homogeneous aerosols of small particle diameter. By contrast, workers are usually exposed to coarser and more heterogeneous aerosols. The particle size distribution of an aerosol will determine the deposited fraction of inhaled particles in the various regions of the respiratory tract in rodents and humans. The deposited, and subsequently retained, doses in these regions correlate closely with long-term toxic effects. Yet, differences in deposited doses between animals and humans due to particle size differences of aerosols have not been consistently taken into account in risk assessment. This paper describes an approach to calculate equivalent human concentrations (EHC) for respiratory tract effects after inhalation using workplace particle size information. Worker's exposure to the EHC results in the same deposited dose in the respiratory tract as achieved in animals exposed to the experimental particle size distribution. Example data for nickel compounds demonstrate that exposure levels used in the rat studies are equivalent to 4-11-fold higher levels of human workplace exposures. This approach is equally applicable to other metal/inorganic particulates that exert adverse effects on the respiratory tract after inhalation. Dosimetric extrapolation should be a first step in the derivation of limit values based on animal local respiratory effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yrtph.2010.02.006DOI Listing

Publication Analysis

Top Keywords

particle size
20
respiratory tract
16
size differences
8
animal studies
8
human workplace
8
limit values
8
size distribution
8
size
5
particle
5
respiratory
5

Similar Publications

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.

View Article and Find Full Text PDF

Non-viral vectors have gained recognition for their ability to enhance the safety of gene delivery processes. Among these, polyethyleneimine (PEI) stands out as the most widely utilized cationic polymer due to its accessibility. Traditional methods of modifying PEI, such as ligand conjugation, chemical derivatization, and cross-linking, are associated with intricate preparation procedures, limited transfection efficiency, and suboptimal biocompatibility.

View Article and Find Full Text PDF

Micelles, liposomes, and solid lipid nanoparticles (SLNs) are promising drug delivery vehicles; however, poor aqueous stability requires post-processing drying methods for maintaining long-term stability. The objective of this study was to compare the potential of lipid-based micelles, liposomes, and SLNs for producing stable re-dispersible spray-dried powders with trehalose or a combination of trehalose and L-leucine. This study provides novel insights into the implementation of spray drying as a technique to enhance long-term stability for these lipid-based nanocarriers.

View Article and Find Full Text PDF

/: Inhaler devices have been developed for the effective delivery of inhaled medications used in the treatment of pulmonary diseases. However, differing operating procedures across the devices can lead to user errors and reduce treatment efficacy, especially when patients use multiple devices simultaneously. To address this, we developed a novel dry powder inhaler (DPI), combining fluticasone propionate (FP), salmeterol xinafoate (SX), and tiotropium bromide (TB) into a single device designed for bioequivalent delivery compared to existing commercial products in an animal model.

View Article and Find Full Text PDF

Dry powder inhalers (DPI's) are becoming increasingly popular due to growing interest in pulmonary drug delivery and their performance is the net result of a series of processes carried out during the formulation development and manufacturing process such as excipient selection, blending, milling, filling, and spray drying. To reach the small airways of the deep lung, the active pharmaceutical ingredients (API) particles need to have an aerodynamic diameter of 1-5 μm to avoid impaction and particle sedimentation in the upper respiratory tract, and due to this small particle size, the powder becomes highly cohesive resulting in poor flow. Therefore, API is usually blended with a coarse carrier to improve flowability, and due to its large size, it is more fluidizable than the micronized drug.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!