Embryonic stem cells (ESCs) are potentially powerful tools for regenerative medicine and establishment of disease models. The recent progress in ESC technologies is noteworthy, but ESC differentiation into renal lineages is relatively less established. The present study aims to differentiate mouse ESCs (mESCs) into a renal progenitor pool, the intermediate mesoderm (IM), without addition of exogenous cytokines and embryoid formation. First, we treated mESCs with a combination of small molecules (Janus-associated tyrosine kinase inhibitor 1, LY294002, and CCG1423) and differentiated them into BMP7-positive cells, BMP7 being the presumed inducing factor for IM. When these cells were cultured with adding retinoic acid, expression of odd-skipped related 1 (Osr1), which is essential to IM differentiation, was enhanced. To simplify the differentiation protocol, the abovementioned four small molecules (including retinoic acid) were combined and added to the culture. Under this condition, more than one-half of the cells were positive for Osr1, and at the same time, Pax2 (another IM marker) was detected by real-time PCR. Expressions of ectodermal marker and endodermal marker were not enhanced, while mesodermal marker changed. Moreover, expression of genes indispensable to kidney development, i.e., Lim1 and WT1, was detected by RT-PCR. These results indicate the establishment of a specific, effective method for differentiation of the ESC monolayer into IM using a combination of small molecules, resulting in an attractive cell source that could be experimentally differentiated to understand nephrogenic mechanisms and cell-to-cell interactions in embryogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2010.02.111DOI Listing

Publication Analysis

Top Keywords

small molecules
16
combination small
12
embryonic stem
8
stem cells
8
intermediate mesoderm
8
bmp7-positive cells
8
retinoic acid
8
cells
6
differentiation
5
molecules
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!