In this study, we have evaluated the use of ultra-sterile alginate hydrogels encapsulated with HepG2 liver cells for applications in high throughput drug screening. We have studied the cellular viability and metabolic capacity of the encapsulated cells in two different alginate structures SLM100 (G:M::40:60) and SLG100 (G:M::60:40). We have also developed protocols to characterize the encapsulated cells within the alginate structure using scanning electron microscopy (SEM) and laser scanning confocal microscopy (LSCM). Further we have studied the Phase-I/II metabolic characteristics of the encapsulated cells in monolayer and 3D culture. Our results indicate that cells encapsulated within SLM100 and SLG100 class of alginates have shown high cellular viability with >80% even after 14 days in culture. As expected, the proliferation rates of the encapsulated cells are held steady and do not proliferate within the gels. Production of liver-specific enzymes such as CYP1A1 and CYP3A4 after 14 days in culture indicates the viability and functionality of the encapsulated HepG2 cells. Phase-II Glutathione activity of the encapsulated cells were also maintained in 3D culture conditions. The encapsulated cells within the 3D gels were also capable of metabolizing the pro-drug EFC (7-ethoxy-4-trifluoromethyl coumarin) to HFC (7-hydroxy-4-trifluoromethyl) in a linear fashion over a period of time. These results have provided us with baseline results to benchmark future improvements in material and design configurations for optimal pharmacokinetic response of in vitro tissue model systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2010.02.015DOI Listing

Publication Analysis

Top Keywords

encapsulated cells
24
cells
10
encapsulated
10
hepg2 liver
8
liver cells
8
cells encapsulated
8
alginate hydrogels
8
encapsulated hepg2
8
cellular viability
8
cells alginate
8

Similar Publications

The synergistic bioactive effect of polyphenols can enhance the development of functional foods to prevent chronic diseases such as cancer. Curcumin and quercetin have been shown to possess anticancer properties. The combination of curcumin and quercetin has been shown to provide synergistic effects against cancer cell proliferation.

View Article and Find Full Text PDF

Fabrication of phospholipid polymer-modified alginate hydrogels for bioartificial pancreas.

J Biosci Bioeng

January 2025

Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan. Electronic address:

The bioartificial pancreas, composed of a semi-permeable hydrogel encapsulating insulin-secreting cells, has attracted attention as a treatment for type 1 diabetes. In this study, we developed phospholipid polymer-modified alginate hydrogel beads that encapsulated spheroids of the pancreatic beta cell line MIN6. The hydrogel beads were composed of methacrylated alginic acid, which enabled both ionic and covalent cross-linking, resulting in a hydrogel that was more stable than conventional alginate hydrogels.

View Article and Find Full Text PDF

Seminal vesicle schwannoma with chronic hemorrhage.

Neurosciences (Riyadh)

January 2025

From the Department of Radiology (Li, Zhang), Department of Pathology (Yang), First People's Hospital of Yongkang City, Yongkang City, and from Jinhua Central Hospital (Ying), Jinhua City, Zhejiang Province, China.

Schwannomas are benign tumors originating from Schwann cells, with seminal vesicle schwannomas being exceedingly rare. This report describes a 54-year-old man with an incidental discovery of a right-sided seminal vesicle mass during a routine ultrasound examination. Further imaging, including MRI and contrast-enhanced CT scans, revealed a well-defined, encapsulated mass with heterogeneous signal intensity suggestive of schwannoma.

View Article and Find Full Text PDF

Reversible light-responsive protein hydrogel for on-demand cell encapsulation and release.

Acta Biomater

January 2025

Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA. Electronic address:

The design of biomaterials that can reconfigure on-demand in response to external stimuli is an emerging area in materials research. However, achieving reversible assembly of protein-based biomaterials by light input remains a major challenge. Here, we present the engineering of a new protein material that is capable of switching between liquid and solid state reversibly, controlled by lights of different wavelengths.

View Article and Find Full Text PDF

Keratin nanoparticles derived from feather waste for novel antibacterial delivery.

Int J Biol Macromol

January 2025

Biomaterials Department, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan. Electronic address:

The global rise of bacterial resistance demands innovative strategies to enhance antibiotic efficacy. This study investigates keratin nanoparticles (KNPs) derived from waste chicken feathers as sustainable drug carriers. Antibacterial activity of KNPs was evaluated against Staphylococcus aureus and Escherichia coli using antibacterial sensitivity assays, including disc diffusion and minimum inhibitory concentration tests, while cytotoxicity was evaluated on human lymphoma cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!